

Karnataka State Open University

Mukthagangothri, Mysore – 570 006.

Dept. of Studies and Research in Management

MBA IT Specialization

IV Semester

MBSC-4.1G Software Project Management

Block 1

PREFACE

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engineering

problem solving. It is a key factor that differentiates modern products and services. It is

embedded in systems of all kinds: transportation, medical, telecommunications, military,

industrial processes, entertainment, office products, . . . the list is almost endless. Software is

virtually inescapable in a modern world. And as we move into the twenty-first century, it will

become the driver for new advances in everything from elementary education to genetic

engineering.

When a computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify and even

easier to use—it can and does change things for the better. But when software fails—when its

users are dissatisfied, when it is error prone, when it is difficult to change and even harder to

use—bad things can and do happen. We all want to build software that makes things better,

avoiding the bad things that lurk in the shadow of failed efforts. To succeed, we need

discipline when software is designed and built. We need an engineering approach.

The whole material is organized into four modules each with four units. Each unit

lists the objectives of the study along with the relevant questions, illustrations and suggested

reading to better understand the concepts.

Wish you happy reading!!!

KARNATAKA STATE OPEN UNIVERSITY

MUKTHAGANGOTRI, MYSURU-06

Dept. of Studies and Research in Management

MBA IT

IV SEMESTER

MBSC-4.1G Software Project Management

BLOCK 1: Introduction to Software Project Management

UNIT-1: INTRODUCTION TO PROJECT MANAGEMENT 1-19

UNIT-2: TECHNOLOGY CONTEXT 20-40

UNIT-3: SOFTWARE PROJECT MANAGEMENT CONCEPTS 41-68

UNIT-4: SOFTWARE QUALITY MANAGEMENT 69-84

BLOCK 1 INTRODUCTION

A project is a group of tasks that need to complete to reach a clear result. A project also

defines as a set of inputs and outputs which are required to achieve a goal. Projects can

vary from simple to difficult and can be operated by one person or a hundred.

Software project management is an art and discipline of planning and supervising

software projects. It is a sub-discipline in which software projects are planned,

implemented, monitored and controlled.

Software is a non-physical product. Software development is a new stream in business

and there is very little experience in building software products. Most of the software

products are made to fit clients‘ requirements. The most important is that the basic

technology changes and advances so frequently and rapidly that experience of one

product may not be applied to the other one. Such type of business and environmental

constraints increase risk in software development hence it is essential to manage software

projects efficiently. It is necessary for an organization to deliver quality products, keep the

cost within the client‘s budget constrain and deliver the project as per schedule. Hence in

order, software project management is necessary to incorporate user requirements along

with budget and time constraints.

This block consists of four units and is organized as follows:

Unit 1 speaks about the past and the present Software Project Management methodology

and their pros and cons, the different phases and the process models of Software Projects.

Unit 2 focuses on the context of Information Technology in Software Projects.

Unit 3 emphasises on the major parameters of Software Project Management like People,

Product, Process, the Software Configuration Management and Testing Strategies.

Unit 4 highlights the Quality Management concepts in Software Project Management.

The different concepts, review techniques and quality assurance are underlined in this

unit.

1

STRUCTURE

1.0 Objectives

1.1 Introduction

1.2 Introduction to project management

1.3 Project Management: Past and Present

1.4 Project Management Overview

 1.3.1 Project Characteristics

 1.3.2 Project Deadlines and Penalties

 1.3.3 Project Budgets

 1.3.4 Project Risk Register

 1.3.5 Project Management Definition

 1.3.6 Project Quality and Standards

1.5 Software Project vs Other Types

1.6 Software Project Lifecycle (Phases)

 1.5.1 Requirement Collection

 1.5.2 Feasibility Study

 1.5.3 Design

 1.5.4 Coding

 1.5.5 Testing

 1.5.6 Installation

 1.5.7 Maintenance

1.7 Software Process Models

 1.7.1 Waterfall Model

 1.7.2 V Model

 1.7.3 Incremental Model

 1.7.4 Iterative Model

 1.7.5 RAD Model

 1.7.6 Spiral Model

 1.7.7 Agile Model

1.8 Check your progress

1.9 Summary

1.10 Keywords

UNIT-1: INTRODUCTION TO PROJECT MANAGEMENT

2

1.11 Questions for self-study

1.12 References

1.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the process and the need of SPM

 Explain the difference between the past and present system

 Recognize the different phases of project life cycle

 Discuss various Software Process Models

1.1 INTRODUCTION

 In this unit, we are going to discuss about project management. Initially, past and the

present Software Project Management methodology and their pros and cons are discussed.

Further, conventional management types, the different phases and the process models of

Software Projects are discussed in detail.

1.2 INTRODUCTION TO PROJECT MODEL

Project management is the discipline of defining and achieving project goals while

optimizing for any resource constraints during the lifecycle of a project.

A subset of project management, Software Project Management is the practice of planning

and delivering software development projects within variables such as:

 Time

 Quality

 Cost

 The wider scope

Before getting into the process of Project Management, one has to be clearly aware of

Software Projects. A project is well-defined task, which is a collection of several operations

done in order to achieve a goal (for example, software development and delivery). A Project

can be characterized as:

Regardless, every project must have the following components:

 Goal: What are you trying to achieve?

 Timeline: When are you trying to achieve it by?

3

 Budget: How much will it cost to achieve?

 Stakeholders: Who are the major players who have an interest in this project?

 Project manager: Who is going to make sure everything that needs to be completed

gets completed?

A project is not something routine. Day-to-day operations or maintenance is not considered a

project because it does not have a definitive start and end.

Project management is the practice of applying knowledge, skills, tools, and techniques to

complete a project according to specific requirements. Understanding project management

comes down to identifying the problem, creating a plan to solve the problem, and then

executing on that plan until the problem has been solved. That may sound simple, but there is

a lot that goes into it at every stage of the process.

1.3 PROJECT MANAGEMENT: PAST AND PRESENT

Project management, as an idea, goes back a very long way. Thinking about all of the

things that have been built in the history of civilization, there are thousands of years of

project experience to learn from. A dotted line can be drawn from the software developers of

today back through time to the builders of the Egyptian pyramids or the architects of the

Roman aqueducts. For their respective eras, project managers have played similar roles,

applying technology to the relevant problems of the times. Yet today, when most people try

to improve how their web and software development projects are managed, it‘s rare that they

pay attention to lessons learned from the past. The timeline we use as the scope for useful

knowledge is much closer to present day than it should be.

Four Periods in the Development of Modern Project Management

[1] Prior to 1958: Craft system to human relations. During this time, the evolution of

technology, such as, automobiles and telecommunications shortened the project schedule. For

instance, automobiles allowed effective resource allocation and mobility, whilst the

telecommunication system increased the speed of communication. Furthermore, the job

specification which later became the basis of developing the Work Breakdown Structure

(WBS) was widely used and Henry Gantt invented the Gantt chart. Examples of projects

undertaken during this period as supported by documented evidence include: (a) Building the

Pacific Railroad in 1850s; (b) Construction of the Hoover Dam in 1931-1936, that employed

approximately 5,200 workers and is still one of the highest gravity dams in the U.S.

generating about four billion kilowatt hours a year; and (c) The Manhattan Project in 1942-

4

1945 that was the pioneer research and development project for producing the atomic bomb,

involving 125,000 workers and costing nearly $2 billion.

[2] 1958-1979: Application of Management Science. Significant technology advancement

took place between 1958 and 1979, such as, the first automatic plain-paper copier by Xerox

in 1959. Between 1956 and 1958 several core project management tools including CPM and

PERT were introduced. However, this period was characterised by the rapid development of

computer technology. The progression from the mainframe to the mini-computer in the 1970s

made computers affordable to medium size companies. In 1975, Bill Gates and Paul Allen

founded Microsoft. Furthermore, the evolution of computer technology facilitated the

emergence of several project management software companies, including, Artemis (1977),

Oracle (1977), and Scitor Corporation (1979). In the 1970s other project management tools

such as Material Requirements Planning (MRP) were also introduced.

 [3] 1980-1994: Production Centre Human Resources. The 1980s and 1990s are characterised

by the revolutionary development in the information management sector with the

introduction of the personal computer (PC) and associated computer communications

networking facilities. This development resulted in having low cost multitasking PCs that had

high efficiency in managing and controlling complex project schedules. During this period

low cost project management software for PCs became widely available that made project

management techniques more easily accessible.

 [4] 1995-Present: Creating a New Environment. This period is dominated by the

developments related to the Internet that changed dramatically business practices in the mid

1990s. The Internet has provided fast, interactive, and customised new medium that allows

people to browse, purchase, and track products and services online instantly. This has

resulted in making firms more productive, more efficient, and more client oriented.

Furthermore, many of today's project management software have an Internet connectivity

feature. This allows automatic uploading of data so that anyone around the globe with a

standard browser can: (a) input the most recent status of their assigned tasks; (b) find out how

the overall project is doing; (c) be informed of any delays or advances in the schedule; and

(d) stay "in the loop" for their project role, while working independently at a remote site.

Current and Emergent Practices in Project Management

Between 2010 and 2020, we expanded our understanding of project management. PM's field

is diffuse and multi-disciplinary and offers a considerable body of literature in related areas

5

like agile project management, strategy execution, business analysis, and more. There are

various methods and frameworks, and we realized that we could build our hybrid methods.

But how?

Figure 1.1 – Disciplined agile toolkit (PMI)

Disciplined Agile (Figure 1.2) is a toolkit to help people and organizations to fully and truly

become agile by combining different execution approaches, including serial and agile, to the

other business processes in an integrated fashion. Describing DA in detail is beyond this

article's scope, but that leads us to "What's next?"

1.4 PROJECT MANAGEMENT OVERVIEW

Project management is the use of specific knowledge, skills, tools and techniques to

deliver something of value to people. The development of software for an improved business

process, the construction of a building, the relief effort after a natural disaster, the expansion

of sales into a new geographic market—these are all examples of projects.

6

All projects are a temporary effort to create value through a unique product, service or result.

All projects have a beginning and an end. They have a team, a budget, a schedule and a set of

expectations the team needs to meet. Each project is unique and differs from routine

operations—the ongoing activities of an organization—because projects reach a conclusion

once the goal is achieved.

The changing nature of work due to technological advances, globalization and other factors

means that, increasingly, work is organized around projects with teams being brought

together based on the skills needed for specific tasks.

Leading these projects are Project Professionals—people who either intentionally or by

circumstance are asked to ensure that a project team meets its goals. Project professionals use

many different tools, techniques and approaches to meet the needs of a project.

Some projects are needed to quickly resolve problems, with an understanding that

improvements will be made over a period of time. Other projects have a longer duration

and/or produce a product or other outcome that will not need major improvements outside of

projected maintenance, such as a highway.

Still others will be a mix of both of these types of projects. Project professionals use a variety

of skills and knowledge to engage and motivate others to reach a project‘s goals. Project

professionals are critical to the success of projects and are highly sought after to help

organizations achieve their goals.

1.4.1 PROJECT CHARACTERISTICS

When considering whether or not you have a project on your hands, there are some things to

keep in mind. First, is it a project or an ongoing operation? Second, if it is a project, who are

the stakeholders? And third, what characteristics distinguish this endeavor as a project?

Projects have several characteristics:

 Projects are unique.

 Projects are temporary in nature.

 Projects have a definite beginning and ending date.

 Projects are completed when the project goals are achieved or it‘s determined the

project is no longer viable.

A successful project is one that meets or exceeds the expectations of the stakeholders.

7

Project Management is not about managing people alone. Project management can be divided

into different process groups and knowledge areas. Process groups include initiating,

planning, executing, monitoring and controlling, and closing. Knowledge areas include

integration, scope, time cost, quality, human resources, communication, risk, procurement

and stakeholder management.

Figure 1.2 – Project Management Essentials

1.4.2 PROJECT DEADLINES AND PENALTIES

Often projects need to be completed by a set date and there is no leeway for example the

tasks for the birthday party will need to be completed by the day of the birthday. Other

projects may incur penalties if they are not completed on time for example the costs of flights

will increase as you get closer to the date of the flight.

1.4.3 PROJECT BUDGETS

The majority of projects have a budget for completing the project tasks. Using the decorating

a house example, there are many ways to decorate a house; some options will be more

expensive than others. Your final choice of décor will depend on how much money you have

to buy paint, wallpaper, tools etc.

1.4.4 PROJECT RISK REGISTER

A risk register contains a list of things which may hinder the project. The purpose of the risk

register is to identify which risks need to be actively managed in order to

1. Prevent the risk occurring and/or

2. To minimise the impact of a risk if its occurrence can't be prevented.

8

As the list of project risks could be quite long the project team may decide that it is

impractical to try and manage all of the risks; instead they may focus their attention on the

risks that are most likely to occur and the ones that will have the greatest impact on the

project.

1.4.5 PROJECT MANAGEMENT DEFINITION

In each of our examples there are:

1. A number of tasks to complete

2. A date by which the tasks need to be completed

3. A budget within which the project needs to be completed

Bearing each of these requirements in mind let‘s define project management. Project

management is about ensuring that the tasks of a project are completed on time and within

budget.

1.4.6 PROJECT QUALITY AND STANDARDS

The standard to which the tasks are completed is very important, otherwise the project may

cause more problems than benefits. For example a badly decorated house will need to be

redecorated and a holiday that people do not enjoy will cause people stress and not relaxation.

There are a number of ways to manage a project but each method should state who is

responsible for each task and set a deadline for the completion of the task. The project

manager should regularly review how each task is progressing and take action if it is not on

track for completion by the deadline.

1.5 SOFTWARE PROJECT VS OTHER TYPES

Invisibility: When a physical artifact such as a bridge is constructed the progress can actually

be seen. With software, progress is not immediately visible. Software project management

can be the process of making the invisible visible.

Complexity: Per dollar, pound or euro spent, software products contain more complexity than

other engineered artifacts.

Conformity: The 'traditional' engineer usually works with physical systems and materials like

cement and steel. These physical systems have complexity, but are governed by consistent

physical laws. Software developers have to conform to the requirement of human clients. It is

9

not just that individuals can be inconsistent. Organizations, because of lapses in collective

memory, in internal communication or in effective decision making, can exhibit remarkable,

‗organizational-stupidity'.

Flexibility: That software is easy to change is seen as a strength. However, where the

software system interfaces with a physical or organizational system, it is accommodate the

other components rather than vice versa. Thus software systems are particularly subject to

change.

1.6 SOFTWARE PROJECT LIFECYCLE (PHASES)

With all the complex processes involved in software development, it‘s easy to forget

the fundamental process for a successful software development life cycle (SDLC). The

SDLC process includes planning, designing, developing, testing and deploying with ongoing

maintenance to create and manage applications efficiently. When faced with the task of

producing high-quality software that meets a client‘s expectations, requirements, time-frame,

and cost estimations; understanding the SDLC is crucial.

 “SDLC methodologies” are used to create complex applications of varying sizes and scales,

such as Agile, Waterfall and Spiral. Each model follows a particular life cycle in order to

ensure success in the process of software development

1.6.1 Requirement Collection: - The first phase of the software development life cycle

process is requirement collection, where a business analyst will collect the business

needs of the customer in the form of requirement documents and planning for the

quality assurance requirements.

This stage gives a clear picture of the scope of the entire project and the anticipated

issues, opportunities, and directives, which triggered the project and need teams to get

detailed and precise requirements. It will help companies to finalize the necessary

timeline to finish the work of that system.

1.6.2 Feasibility Study: - In the second stage of the software development life cycle, based

on the requirements, a set of people sit and analysis if the project is Doable or not

Doable, which means that organization has enough resource, cost, time so that they

can deliver the product on time with the high -quality product. We can check the

feasibility in a different manner, i.e., Economic, Legal, Operation, feasibility,

Technical, Schedule.

https://www.charterglobal.com/here-are-ways-to-save-time-during-a-software-development-life-cycle/

10

1.6.3 Design: - In the third stage of the software development life cycle, once the feasibility

is done, prepare a blueprint of the application. The blueprint has flow charts, flow

diagrams, and decision tree and user interface components.

 The Designer will design the document in two ways:

HLD (High-Level Design): In HLD, we have a brief description, name of each module,

interface relationship, dependencies between modules, database tables, and complete

architecture diagrams

LLD (Low-Level Design): In LLD, we have functional logic of the modules, Database

tables, which include type and size, pointing all kinds of dependency issues and listing of

error messages

1.6.4 Coding: - The fourth stage of the software development life cycle is coding, after the

complication of requirements and designing phase, the developer starts writing code

using the particular program language and, the developer needs to follow specific

predefined coding guidelines and used programming tools like compiler, interpreters,

debugger to generate and implement the code. Coding is the time taking process of

the Software Development Life Cycle process

1.6.5 Testing: - In the testing phase ofthe software development life cycle, once the coding

is completed, the application is handed over to the test engineers where they start

checking the functionality of an application according to the requirement. During the

testing process, we may encounter some bugs which need to be fixed by developers

and retested by the test engineers.

1.6.6 Installation: - In the installation phase, the process will continue until the application

is bug-free/ stable/ and works according to customer needs. The stable application is

handed over to the customer in the form of installation or deploying or rolls out.

1.6.7 Maintenance: - The last phase of software development life cycle, when a customer

starts using the software they may place some issues which need to be in-detail tested

& fixed and handover back to the customer and bug fixes, up-gradation, enhancement

is done under maintenance phase.

―All this phase is essential to make a good quality product or an application. Without

completion of any phase, it might not deliver a good quality product because all the phases

are connected.‖

11

Figure 1.3: Phases of Software Development Life Cycle

1.7 SOFTWARE PROCESS MODELS

 Software Processes is a coherent set of activities for specifying, designing,

implementing and testing software systems. A software process model is an abstract

representation of a process that presents a description of a process from some particular

perspective. There are many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the system and

implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing customer needs.

12

Types of Software Process Model

Software processes, methodologies and frameworks range from specific prescriptive steps

that can be used directly by an organization in day-to-day work, to flexible frameworks that

an organization uses to generate a custom set of steps tailored to the needs of a specific

project or group. In some cases a ―sponsor‖ or ―maintenance‖ organization distributes an

official set of documents that describe the process.

Software Process and Software Development Lifecycle Model

One of the basic notions of the software development process is SDLC models which stands

for Software Development Life Cycle models. There are many development life cycle models

that have been developed in order to achieve different required objectives. The models

specify the various stages of the process and the order in which they are carried out. The most

used, popular and important SDLC models are given below:

 Waterfall model

 V model

 Incremental model

 RAD model

 Agile model

 Iterative model

 Spiral model

 Prototype model

1.7.1 WATERFALL MODEL

The waterfall model is a breakdown of project activities into linear sequential phases, where

each phase depends on the deliverables of the previous one and corresponds to a

specialisation of tasks. The approach is typical for certain areas of engineering design.

13

Figure 1.4: Waterfall Model

1.7.2 V MODEL

The V-model represents a development process that may be considered an extension of the

waterfall model and is an example of the more general V-model. Instead of moving down in a

linear way, the process steps are bent upwards after the coding phase, to form the typical V

shape. The V-Model demonstrates the relationships between each phase of the development

life cycle and its associated phase of testing. The horizontal and vertical axes represent time

or project completeness (left-to-right) and level of abstraction (coarsest-grain abstraction

uppermost), respectively.

Figure 1.5: V Model

14

1.7.3 INCREMENTAL MODEL

The incremental build model is a method of software development where the model is

designed, implemented and tested incrementally (a little more is added each time) until the

product is finished. It involves both development and maintenance. The product is defined as

finished when it satisfies all of its requirements. Each iteration passes through the

requirements, design, coding and testing phases. And each subsequent release of the system

adds function to the previous release until all designed functionally has been implemented.

This model combines the elements of the waterfall model with the iterative philosophy of

prototyping.

Figure 1.6: Incremental Model

1.7.4 ITERATIVE MODEL

An iterative life cycle model does not attempt to start with a full specification of requirements

by first focusing on an initial, simplified set user features, which then progressively gains

more complexity and a broader set of features until the targeted system is complete. When

adopting the iterative approach, the philosophy of incremental development will also often be

used liberally and interchangeably.

In other words, the iterative approach begins by specifying and implementing just part of the

software, which can then be reviewed and prioritized in order to identify further

requirements. This iterative process is then repeated by delivering a new version of the

software for each iteration. In a light-weight iterative project the code may represent the

major source of documentation of the system; however, in a critical iterative project a formal

software specification may also be required.

15

Figure 1.7: Iterative Model

1.7.5 RAD MODEL

Rapid application development was a response to plan-driven waterfall processes, developed

in the 1970s and 1980s, such as the Structured Systems Analysis and Design Method

(SSADM). Rapid application development (RAD) is often referred as the adaptive software

development. RAD is an incremental prototyping approach to software development that end

users can produce better feedback when examining a live system, as opposed to working

strictly with documentation. It puts less emphasis on planning and more emphasis on an

adaptive process.

RAD may resulted in a lower level of rejection when the application is placed into

production, but this success most often comes at the expense of a dramatic overruns in project

costs and schedule. RAD approach is especially well suited for developing software that is

driven by user interface requirements. Thus, some GUI builders are often called rapid

application development tools.

Figure 1.8: RAD Model

16

1.7.6 SPIRAL MODEL

The spiral model, first described by Barry Boehm in 1986, is a risk-driven software

development process model which was introduced for dealing with the shortcomings in the

traditional waterfall model. A spiral model looks like a spiral with many loops. The exact

number of loops of the spiral is unknown and can vary from project to project. This model

supports risk handling, and the project is delivered in loops. Each loop of the spiral is called a

Phase of the software development process.

The initial phase of the spiral model in the early stages of Waterfall Life Cycle that is needed

to develop a software product. The exact number of phases needed to develop the product can

be varied by the project manager depending upon the project risks. As the project manager

dynamically determines the number of phases, so the project manager has an important role

to develop a product using a spiral model.

Figure 1.9: Spiral Model

1.7.7 AGILE MODEL

Agile is an umbrella term for a set of methods and practices based on the values and

principles expressed in the Agile Manifesto that is a way of thinking that enables teams and

businesses to innovate, quickly respond to changing demand, while mitigating risk.

Organizations can be agile using many of the available frameworks available such as Scrum,

Kanban, Lean, Extreme Programming (XP) and etc.

17

Figure 1.10: Agile Model

The Agile movement proposes alternatives to traditional project management. Agile

approaches are typically used in software development to help businesses respond to

unpredictability which refer to a group of software development methodologies based on

iterative development, where requirements and solutions evolve through collaboration

between self-organizing cross-functional teams.

The primary goal of being Agile is empowered the development team the ability to create and

respond to change in order to succeed in an uncertain and turbulent environment. Agile

software development approach is typically operated in rapid and small cycles. This results in

more frequent incremental releases with each release building on previous functionality.

Thorough testing is done to ensure that software quality is maintained.

Figure 1.11: Agile Method

18

1.8 CHECK YOUR PROGRESS

1. What is the objective of Software Project Management?

2. What is Software Process Model?

3. PM's field is diffuse and multi-disciplinary and offers a considerable body of literature in

related areas like --------------------, ----------------, ----------------, and more.

4. What is Conventional Software Management?

5. The exact number of phases needed to develop the product can be ----------- the project

Answers to check your progress:

1. Software project management focuses on developing a product that will have a positive

effect on an organization. Without project management, a software development team

may begin working on a project without any clear vision or guidance, resulting in more

frequent errors and confusion.

2. In software engineering, a software process model is the mechanism of dividing software

development work into distinct phases to improve design, product management, and

project management. It is also known as a software development life cycle.

3. like agile project management, strategy execution, business analysis

4. In the past, organizations used conventional software management. This management

utilized custom tools and process and virtually custom components built-in primitive

languages. Thus, the performance of the project was very much predictable in the

schedule, cost, and quality. It is a practically outdated technique and technology.

5. Varied

1.9 SUMMARY

In this Unit, past and the present Software Project Management methodology and their

pros and cons are discussed, conventional management types, the different phases and the process

models of Software Projects. Unit 2 focuses on the context of Information Technology in

Software Projects. Unit 3 emphasises on the major parameters of Software Project Management

like People, Product, Process, the Software Configuration Management and Testing Strategies.

Unit 4 highlights the Quality Management concepts in Software Project Management. The

different concepts, review techniques and quality assurance are underlined in this unit.

19

1.10 KEYWORDS

 Project: It is well-defined task, which is a collection of several operations done in order

to achieve a goal.

 Project management: It is the practice of applying knowledge, skills, tools, and

techniques to complete a project according to specific requirements.

 Coding: It is a computer programming language that helps to communicate with a

computer.

 Software maintenance: It is the process of changing, modifying, and updating software

to keep up with customer needs.

 Software Processes: It is a coherent set of activities for specifying, designing,

implementing and testing software systems.

1.11 QUESTIONS FOR SELF STUDY

1. The difference between the Project Management followed in the past and present.

2. Write an overview on the project management overview and its characteristics.

3. Describe the phases of Software Development Life Cycle.

4. Write the principles of Conventional and Current Software Management.

5. The difference and purpose of various software process models along with their diagrams.

6. What kind of evolution practices are followed in Software Economics?

1.12 REFERENCES

1. https://www.projectmanagement.com/

2. https://www.oreilly.com/

3. https://www.projectsmart.co.uk/

4. https://pressbooks.bccampus.ca/

5. https://www.pmi.org/

6. https://www.learnmanagement2.com/

7. https://www.tutorialandexample.com/

8. https://www.geeksforgeeks.org/

9. https://www.visual-paradigm.com/guide/software-development-process/what-is-a-

software-process-model/

https://www.visual-paradigm.com/guide/software-development-process/what-is-a-software-process-model/
https://www.visual-paradigm.com/guide/software-development-process/what-is-a-software-process-model/

20

STRUCTURE

2.0 Objectives

2.1 Introduction

2.2 A System View of Project Management

2.3 Understanding Organizations

2.4 Stakeholder Management

2.5 Project Phases

2.6 The Context of Information Technology Projects

2.7 Recent Trends Affecting Information Technology Project Management

2.8 Check your progress

2.9 Summary

2.10 Key words

2.11 Questions for self-study

2.12 References

2.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the systems view of project management and how it applies to

information technology projects

 Analyze a formal organization using the structural, human resources, political, and

symbolic organizational frames

 Describe the differences among functional, matrix, and project organizational

structures

 Explain why stakeholder management and top management commitment are critical

for a project‘s success

 Understand the concept, development, implementation, and close-out phases of the

project life cycle

 Distinguish between project development and product development

 Discuss the unique attributes and diverse nature of information technology projects

 List the skills and attributes of a good project manager in general and in the

information technology field

UNIT-2: TECHNOLOGY CONTEXT

21

2.1 INTRODUCTION

 In this unit, we are going to discuss about systems view of project management and

the application of Information Technology. The analysis helps the organization to provide the

perspectives of structural, hr and political frames. This also helps to understand the

conceptual, developmental, implementation and close-out phases of project life cycle. It also

provides the clarity between project and product development.

2.2 A SYSTEM VIEW OF PROJECT MANAGEMENT

Even though projects are temporary and intended to provide a unique product or

service, you cannot run projects in isolation. If project managers lead projects in isolation, it

is unlikely that they will ever truly serve the needs of the organization. Therefore, projects

must operate in a broad organizational environment, and project managers need to consider

projects within the greater organizational context. To handle complex situations effectively,

project managers need to take a holistic view of a project and understand how it relates to the

larger organization. Systems thinking describe this holistic view of carrying out projects

within the context of the organization.

The term systems approach emerged in the 1950s to describe a holistic and analytical

approach to solving complex problems that includes using a systems philosophy, systems

analysis, and systems management. Systems are sets of interacting components that work

within an environment to fulfil some purpose. For example, the human body is a system

composed of many subsystems, including the nervous system, the skeletal system, the

circulatory system, and the digestive system. Organizations are also systems, with people in

various roles working together to design, develop, deliver, and sell various products and

services. A systems philosophy is an overall model for thinking about things as systems.

Systems analysis is a problem-solving approach that requires defining the scope of the

system, dividing it into components, and then identifying and evaluating its problems,

opportunities, constraints, and needs. Once this is completed, the systems analyst then

examines alternative solutions for improving the current situation; identifies an optimum, or

at least satisfactory, solution or action plan; and examines that plan against the entire system.

Systems management addresses the business, technological, and organizational issues

associated with creating, maintaining, and modifying a system.

22

Using a systems approach is critical to successful project management. If top management

and project managers are to understand how projects relate to the whole organization, they

must follow a systems philosophy. They must use systems analysis to address needs with a

problem-solving approach. They must use systems management to identify key issues in

business, technological, and organizational spheres related to each project in order to identify

and satisfy key stakeholders and do what is best for the entire organization.

2.3 UNDERSTANDING ORGANIZATIONS

The systems approach requires that project managers always view their projects in the

context of the larger organization. Organizational issues are often the most difficult part of

working on and managing projects. In fact, many people believe that most projects fail

because of organizational issues like company politics. Project managers often do not spend

enough time identifying all the stakeholders involved in projects, especially the people

opposed to the projects. Also, project managers often do not spend enough time considering

the political context of a project or the culture of the organization. To improve the success

rate of IT projects, it is important for project managers to develop a better understanding of

people as well as organizations.

THE FOUR FRAMES OF ORGANIZATIONS

As shown in Figure 2.1, you can try to understand organizations better by focusing on

different perspectives. Organizations can be viewed as having four different frames:

structural, human resources, political, and symbolic.1

 The structural frame deals with how the organization is structured (usually depicted in

an organizational chart) and focuses on different groups‘ roles and responsibilities to meet

the goals and policies set by top management. This frame is very rational and focuses on

coordination and control. For example, within the structural frame, a key IT issue is

whether a company should centralize the IT personnel in one department or decentralize

across several departments. You will learn more about organizational structures in the

next section.

 The human resources (HR) frame focuses on producing harmony between the needs of

the organization and the needs of people. It recognizes that mismatches can occur

between the needs of the organization and those of individuals and groups, and works to

resolve any potential problems. For example, many projects might be more efficient for

23

the organization if employees worked 80 or more hours a week for several months.

However, this work schedule would conflict with the personal lives and health of many

employees. Important IT issues related to the human resources frame are the shortage of

skilled IT workers within the organization and unrealistic schedules imposed on many

projects.

Structural frame: Roles and

responsibilities, coordination, and control.

Organizational charts help describe this

frame.

Human resources frame: Providing harmony

between needs of the organization and needs

of people.

Political frame: Coalitions composed of

varied individuals and interest groups.

Conflict and power are key issues.

Symbolic frame: Symbols and meanings

related to events. Culture, language,

traditions, and image are all parts of this

frame.

Figure 2.1 – Perspective on Organizations

 The political frame addresses organizational and personal politics. Politics in

organizations take the form of competition among groups or individuals for power,

resources, and leadership. The political frame emphasizes that organizations are coalitions

composed of varied individuals and interest groups. Often, important decisions need to be

made about the allocation of scarce resources. Competition for resources makes conflict a

central issue in organizations, and power improves the ability to obtain those resources.

Project managers must pay attention to politics and power if they are to be effective. It is

important to know who opposes your projects as well as who supports them. Important IT

issues related to the political frame are the differences in power between central functions

and operating units or between functional managers and project managers.

 The symbolic frame focuses on symbols and meanings. In this frame, the most important

aspect of any event in an organization is not what actually happened, but what it means.

Was it a good sign that the CEO came to a kick-off meeting for a project, or was it a

threat? The symbolic frame also relates to the company‘s culture. How do people dress?

How many hours do they work? How do they run meetings? Many IT projects are

international and include stakeholders from various cultures. Understanding those

cultures is also a crucial part of the symbolic frame.

ORGANIZATIONAL STRUCTURES

Many discussions of organizations focus on their structure. Three general classifications of

organizational structures are functional, project, and matrix. Many companies today use all

24

three structures somewhere in the organization, but using one is most common. Figure 2.2

portrays the three organizational structures. A functional organizational structure is the

hierarchy most people think of when picturing an organizational chart. Functional managers

or vice presidents in specialties such as engineering, manufacturing, IT, and human resources

report to the chief executive officer (CEO). Their staffs have specialized skills in their

respective disciplines. For example, most colleges and universities have very strong

functional organizations. Only faculty members in the business department teach business

courses; faculty in the history department teach history; faculty in the art department teach

art, and so on.

Figure 2.2 – Funtional, project and matrix organizational structures

25

A project organizational structure also is hierarchical, but instead of functional managers

or vice presidents reporting to the CEO, program managers report to the CEO. Their staffs

have a variety of skills needed to complete the projects within their programs. An

organization that uses this structure earns its revenue primarily from performing projects for

other groups under contract. For example, many defense, architectural, engineering, and

consulting companies use a project organizational structure. These companies often hire

people specifically to work on particular projects.

A matrix organizational structure represents the middle ground between functional and

project structures. Personnel often report both to a functional manager and one or more

project managers. For example, IT personnel at many companies often split their time

between two or more projects, but they report to their manager in the IT department. Project

managers in matrix organizations have staff from various functional areas working on their

projects, as shown in Figure 2-3. Matrix organizational structures can be strong, weak, or

balanced, based on the amount of control exerted by the project managers. Problems can

occur if project team members are assigned to several projects in a matrix structure and the

project manager does not have adequate control of their time.

Organizational Culture

Just as an organization‘s structure affects its ability to manage projects, so does its culture.

Organizational culture is a set of shared assumptions, values, and behaviours that characterize

the functioning of an organization. It often includes elements of all four frames described

previously. Organizational culture is very powerful, and many people believe the underlying

causes of many companies‘ problems are not in the organizational structure or staff; they are

in the culture. It is also important to note that the same organization can have different

subcultures. The IT department may have a different organizational culture than the finance

department, for example. Some organizational cultures make it easier to manage projects.

According to Stephen P. Robbins and Timothy Judge, authors of a popular textbook on

organizational behaviour, there are 10 characteristics of organizational culture:

1. Member identity: The degree to which employees identify with the organization as a

whole rather than with their type of job or profession. For example, project managers

or team members might feel more dedicated to their company or project team than to

their job or profession, or they might not have any loyalty to a particular company or

26

team. As you can guess, an organizational culture in which employees identify more

with the whole organization are more conducive to a good project culture.

2. Group emphasis: The degree to which work activities are organized around groups or

teams, rather than individuals. An organizational culture that emphasizes group work

is best for managing projects.

3. People focus: The degree to which management‘s decisions take into account the

effect of outcomes on people within the organization. A project manager might assign

tasks to certain people without considering their individual needs, or the project

manager might know each person very well and focus on individual needs when

assigning work or making other decisions. Good project managers often balance the

needs of individuals and the organization.

4. Unit integration: The degree to which units or departments within an organization are

encouraged to coordinate with each other. Most project managers strive for strong

unit integration to deliver a successful product, service, or result. An organizational

culture with strong unit integration makes the project manager‘s job easier.

5. Control: The degree to which rules, policies, and direct supervision are used to

oversee and control employee behavior. Experienced project managers know it is

often best to balance the degree of control to get good project results.

6. Risk tolerance: The degree to which employees are encouraged to be aggressive,

innovative, and risk seeking. An organizational culture with a higher risk tolerance is

often best for project management because projects often involve new technologies,

ideas, and processes.

7. Reward criteria: The degree to which rewards, such as promotions and salary

increases, are allocated according to employee performance rather than seniority,

favouritism, or other non performance factors. Project managers and their teams often

perform best when rewards are based mostly on performance.

8. Conflict tolerance: The degree to which employees are encouraged to air conflicts and

criticism openly. It is very important for all project stakeholders to have good

communications, so it is best to work in an organization where people feel

comfortable discussing differences openly.

27

9. Means-ends orientation: The degree to which management focuses on outcomes

rather than on techniques and processes used to achieve results. An organization with

a balanced approach in this area is often best for project work.

10. Open-systems focus: The degree to which the organization monitors and responds to

changes in the external environment. As you learned earlier in this chapter, projects

are part of a larger organizational environment, so it is best to have a strong open-

systems focus.

 As you can see, there is a definite relationship between organizational culture and successful

project management. Project work is most successful in an organizational culture where

employees identify more with the organization, where work activities emphasize groups, and

where there is strong unit integration, high risk tolerance, performance-based rewards, high

conflict tolerance, an open-systems focus, and a balanced focus on people, control, and

means orientation.

2.4 STAKEHOLDER MANAGEMENT

Project stakeholders are the people involved in or affected by project activities.

Stakeholders can be internal or external to the organization, directly involved in the project,

or simply affected by the project. Internal project stakeholders include the project sponsor,

project team, support staff, and internal customers of the project. Other internal stakeholders

include top management, other functional managers, and other project managers. Projects

affect these additional internal stakeholders because they use the organization's limited

resources. Thus, while additional internal stakeholders may not be directly involved in the

project, they are still stakeholders because the project affects them in some way.

External project stakeholders include the project‘s customers (if they are external to the

organization), competitors, suppliers, and other external groups potentially involved in the

project or affected by it, such as government officials or concerned citizens. Because the

purpose of project management is to meet project requirements and satisfy stakeholders, it is

critical that project managers take adequate time to identify, understand, and manage

relationships with all project stakeholders.

28

THE IMPORTANCE OF TOP MANAGEMENT COMMITMENT

People in top management positions, of course, are key stakeholders in projects. A very

important factor in helping project managers successfully lead projects is the level of

commitment and support they receive from top management. In fact, without top

management commitment, many projects will fail.

As described earlier, projects are part of the larger organizational environment, and many

factors that might affect a project are out of the project manager‘s control. Several studies cite

executive support as one of the key factors associated with the success of virtually all

projects.

Top management commitment is crucial to project managers for the following reasons:

a) Project managers need adequate resources. The best way to kill a project is to withhold

the required money, people, resources, and visibility for the project. If project managers

have top management commitment, they will also have adequate resources and not be

distracted by events that do not affect their specific projects.

b) Project managers often require approval for unique project needs in a timely manner. For

example, on large information technology projects, top management must understand that

unexpected problems may result from the nature of the products being produced and the

specific skills of the people on the project team. For example, the team might need

additional hardware and software halfway through the project for proper testing, or the

project manager might need to offer special pay and benefits to attract and retain key

project personnel. With top management commitment, project managers can meet these

specific needs in a timely manner.

c) Project managers must have cooperation from people in other parts of the organization.

Since most information technology projects cut across functional areas, top management

must help project managers deal with the political issues that often arise in these types of

situations. If certain functional managers are not responding to project managers‘ requests

for necessary information, top management must step in to encourage functional

managers to cooperate.

d) Project managers often need someone to mentor and coach them on leadership issues.

Many information technology project managers come from technical positions and often

are inexperienced as managers. Senior managers should take the time to pass on

29

leadership advice and encourage new project managers to take classes to develop

leadership skills and allocate the time and funds for them to do so.

Information technology project managers work best in an environment in which top

management values information technology. Working in an organization that values good

project management and sets standards for its use also helps project managers succeed.

2.5 PROJECT PHASES

A project life cycle is a collection of phases. Phases break projects down into smaller,

more manageable pieces, which will reduce uncertainty. Some organizations specify a set of

life cycles for use in all of their projects, while others follow common industry practices

based on the types of projects involved. Project life cycles define what work will be

performed in each phase, what deliverables will be produced and when, who is involved in

each phase, and how management will control and approve work produced in each phase. A

deliverable is a product or service, such as a technical report, a training session, a piece of

hardware, or a segment of software code, produced or provided as part of a project.

In early phases of a project life cycle, resource needs are usually lowest and the level of

uncertainty is highest. Project stakeholders have the greatest opportunity to influence the final

characteristics of the project‘s products, services, or results during the early phases of a

project life cycle. It is much more expensive to make major changes to a project during later

phases. During the middle phases of a project life cycle, the certainty of completing the

project improves as it continues and as more information is known about the project

requirements and objectives. Also, more resources are usually needed than during the initial

or final phase. The final phase of a project focuses on ensuring that project requirements were

met and that the project sponsor approves completion of the project.

The first two traditional project phases (concept and development) focus on planning, and are

often referred to as project feasibility. The last two phases (implementation and closeout)

focus on delivering the actual work, and are often referred to as project acquisition. Each

phase of a project should be successfully completed before the team moves on to the next

phase. This project life cycle approach provides better management control and appropriate

links to the ongoing operations of the organization.

Figure 2.3 provides a summary of the general phases of the traditional project life cycle. In

the concept phase, managers usually develop a business case, which describes the need for

30

the project and basic underlying concepts. A preliminary or rough cost estimate is developed

in this first phase, and an overview of the required work is created.

One tool for creating an overview of the required work is a work breakdown structure

(WBS). A WBS outlines project work by decomposing the work activities into different

levels of tasks. The WBS is a deliverable-oriented document that defines the total scope of

the project. In the concept phase, a WBS usually has only two levels.

Figure 2.3 – Phases of traditional Project Life Cycle

After the concept phase is completed, the next project phase—development—begins. In the

development phase, the project team creates more detailed project management plans, a more

accurate cost estimate, and a more thorough WBS.

The third phase of the traditional project life cycle is implementation. In this phase, the

project team creates a definitive or very accurate cost estimate, delivers the required work,

and provides performance reports to stakeholders.

The last phase of the traditional project life cycle is the close-out phase. In it, all of the work

is completed, and customers should accept the entire project. The project team should

document its experiences on the project in a lessons-learned report.

Many projects, however, do not follow this traditional project life cycle. They still have

general phases with some similar characteristics, but they are much more flexible. For

example, a project might have just three phases—the initial, intermediate, and final phases.

Or, there may be multiple intermediate phases. A separate project might be needed just to

complete a feasibility study. Regardless of the project life cycle‘s specific phases, it is good

31

practice to think of projects as having phases that connect the beginning and end of the

process. This way, people can measure progress toward achieving project goals during each

phase and the project is more likely to be successful.

2.6 THE CONTEXT OF INFORMATION TECHNOLOGY PROJECTS

The project context has a critical impact on which product development life cycle will

be most effective for a particular software development project. Likewise, several issues

unique to the IT industry have a critical impact on managing IT projects. These include the

nature of projects, the characteristics of project team members, and the diverse nature of

technologies involved.

2.6.1 THE NATURE OF IT PROJECTS

Unlike projects in many other industries, IT projects are diverse. Some involve a small

number of people installing off-the-shelf hardware and associated software. Others involve

hundreds of people analyzing several organizations‘ business processes and then developing

new software in a collaborative effort with users to meet business needs. Even for small

hardware-oriented projects, a wide diversity of hardware types can be involved—personal

computers, mainframe computers, network equipment, kiosks, laptops, tablets, or

smartphones. The network equipment might be wireless, cellular based, or cable-based, or

might require a satellite connection. The nature of software development projects is even

more diverse than hardware-oriented projects. A software development project might include

creating a simple, stand-alone Microsoft Excel or Access application or a sophisticated,

global e-commerce system that uses state-of-the-art programming languages and runs on

multiple platforms.

IT projects also support every possible industry and business function. Managing an IT

project for a film company‘s animation department requires different knowledge and skills

than a project to improve a federal tax collection system or to install a communication

infrastructure in a third-world country. Because of the diversity of IT projects and the

newness of the field, it is important to develop and follow best practices in managing these

varied projects. Developing best practices gives IT project managers a common starting point

and method to follow with every project.

32

2.6.2 CHARACTERISTICS OF IT PROJECT TEAM MEMBERS

Because IT projects are diverse, the people involved come from diverse backgrounds and

possess different skills. The resulting diverse project teams provide a significant advantage

because they can analyze project requirements from a more robust systems view. Many

companies purposely hire graduates with degrees in other fields such as business,

mathematics, or the liberal arts to provide different perspectives on IT projects. Even with

these different educational backgrounds, however, there are common job titles for people

working on most IT projects, such as business analyst, programmer, network specialist,

database analyst, quality assurance expert, technical writer, security specialist, hardware

engineer, software engineer, and system architect. Within the category of programmer,

several other job titles describe the specific technologies used, such as Java programmer,

PHP programmer, and C/C++/C# programmer.

Some IT projects require the skills of people in just a few job functions, but some require

inputs from many or all of them. Occasionally, IT professionals move between these job

functions, but more often people become technical experts in one area or they decide to move

into a management position. It is also rare for technical specialists or project managers to

remain with the same company for a long time. In fact, many IT projects 65include a large

number of contract workers. Working with this ―army of free agents,‖ as author Rob

Thomsett calls them, creates special challenges.

2.6.3 DIVERSE TECHNOLOGIES

Many of the job titles for IT professionals reflect the different technologies required to hold

those positions. Differences in technical knowledge can make communication between

professionals challenging. Hardware specialists might not understand the language of

database analysts, and vice versa. Security specialists may have a hard time communicating

with business analysts. People within the same IT job function often do not understand each

other because they use different technology. For example, someone with the title of

programmer can often use several different programming languages. However, if

programmers are limited in their ability to work in multiple languages, project managers

might find it more difficult to form and lead more versatile project teams.

Another problem with diverse technologies is that many of them change rapidly. A project

team might be close to finishing a project when it discovers a new technology that can greatly

enhance the project and better meet long-term business needs. New technologies have also

33

shortened the time frame many businesses have to develop, produce, and distribute new

products and services. This fast-paced environment requires equally fast paced processes to

manage and produce IT projects and products.

2.7 RECENT TRENDS AFFECTING INFORMATION TECHNOLOGY

PROJECT MANAGEMENT

Recent trends such as increased globalization, outsourcing, virtual teams, and agile

project management are creating additional challenges and opportunities for IT project

managers and their teams. Each of these trends and suggestions for addressing them are

discussed in this section.

2.7.1 GLOBALIZATION

IT is a key enabler of globalization. In 2014, more than 1.3 billion people were using

Facebook, spending an average of 21 minutes a day.17 Other social networks, such as Twitter

and LinkedIn, also continue to grow. In 2014, there were over 284 million Twitter users and

332 million LinkedIn users. According to LinkedIn‘s website, in the third quarter of 2014, 75

percent of new members came from outside the United States. Globalization has significantly

affected the field of IT. Even though major IT companies such as Apple, IBM, and Microsoft

started in the United States, much of their business is global—indeed, companies and

individuals throughout the world contribute to the growth of information technologies, and

work and collaborate on various IT projects.

It is important for project managers to address several key issues when working on global

projects:

Communications: Because people work in different time zones, speak different languages,

have different cultural backgrounds, and celebrate different holidays, it is important to

address how people will communicate in an efficient and timely manner. A communications

management plan is vital. For details, see the plan described in Chapter 10, Project

Communications Management.

Trust: Trust is an important issue for all teams, especially when they are global teams. It is

important to start building trust immediately by recognizing and respecting others‘

differences and the value they add to the project.

34

Common work practices: It is important to align work processes and develop a modus

operandi with which everyone agrees and is comfortable. Project managers must allow time

for the team to develop these common work practices. Using special tools, as described next,

can facilitate this process.

Tools: IT plays a vital role in globalization, especially in enhancing communications and

work practices. Many people use free tools such as Skype, Google Docs, or social media to

communicate. Many project management software tools include their own communications

and collaboration features in an integrated package. IBM continues to be the leader in

providing collaboration tools to businesses in over 175 companies, followed by Oracle in 145

countries, SAP in 130 countries, and Microsoft in 113 countries.18 Work groups must

investigate options and decide which tools will work best for their projects. Security is often a

key factor in deciding which tools to use.

2.7.2 OUTSOURCING

The term offshoring is sometimes used to describe outsourcing from another country.

Offshoring is a natural outgrowth of globalization. IT projects continue to rely more and

more on outsourcing, both within and outside their country boundaries.

In its simplest sense, Software Development Outsourcing describes an arrangement, in

which an organization chooses to hire an external software development agency to effectively

carry out all the tasks of a software development project, that could be done in-house instead.

Software outsourcing is about the practice of a company handing over the control of a certain

business process or project to a third-party vendor that is qualified and capable of handling

the required business tasks.

Outsourcing is cost-effective, and in particular - offshore software outsourcing helps lower

development costs which essentially translates to lower market price and enhances

competition. However, in recent years, according to a report by Deloitte and Dubai Outsource

City, companies are starting to look toward software outsourcing to achieve a variety of

business objectives, beyond just costs.

Modes of Software Outsourcing:

There are certain ways for businesses to outsource their software projects to vendors across

the globe, where the development centres can reside on-shore, offshore, and near-shore. Let‘s

consider in detail as follow:

http://outsourcing-outlook.com/assets/pdf/Deloitte-DOC-Whitepaper_outsourcing-and-shared-services2019-2023.pdf
http://outsourcing-outlook.com/assets/pdf/Deloitte-DOC-Whitepaper_outsourcing-and-shared-services2019-2023.pdf
http://outsourcing-outlook.com/assets/pdf/Deloitte-DOC-Whitepaper_outsourcing-and-shared-services2019-2023.pdf
http://outsourcing-outlook.com/assets/pdf/Deloitte-DOC-Whitepaper_outsourcing-and-shared-services2019-2023.pdf

35

Onshore Software Outsourcing

Onshore outsourcing refers to the act of customer companies working with development

teams of software companies that are located in the same country. The advantage of onshore

outsourcing is that there are virtually no language barriers which make communication much

easier and eventually, making outsourcing more effective. However, in return, customers may

have to pay more for development costs.

Offshore Software Outsourcing

Offshore outsourcing means working with development teams in other countries. This is the

most cost-effective option due to low labour costs, and also online communications channels

(e.g. Emails, VoIP Phones, Zoom video conferences, etc.) making it possible to effectively

manage software projects remotely.

Nearshore Software Outsourcing

Nearshore outsourcing companies work with customers in neighbouring countries.

HOW TO OUTSOURCE SOFTWARE DEVELOPMENT EFFECTIVELY?

There are numerous factors that influence the likelihood of success when it comes to software

outsourcing. Among those, there are certain aspects which companies should keep in mind,

including:

 Establish clear goals for outsourcing

 Involve in project management and collaborate with remote teams.

 Have realistic expectations.

 Set milestones and frequently track progress to provide feedback

Again, there‘s no way to guarantee that an outsourcing project will become a hundred percent

success. But there are certain things to do that can help companies improve the chance of

success. Furthermore, customer companies should opt for outsourcing partners who apply

agile methodology in managing their development projects in a flexible way, to allow for

better quality and more frequent release as well as improve collaborations. Additionally,

employing advanced tools for efficient project task management is also highly recommended

to help gain visibility into project progress.

36

2.7.3 VIRTUAL TEAMS

A virtual team (aka ―virtual workgroup‖) is a group of people who participate in common

projects by making collaborative efforts to achieve shared goals and objectives. These people

perform tasks and jobs in a virtual work environment created and maintained through IT and

software technologies.

Figure 2.4 – Virtual teams in the Organization

There are two types of virtual teams, such as follows:

 Global virtual team. As a rule, these teams are located in different countries and

cities all over the world. They can be employees of several companies which join their

efforts and resources (incl. people, technology, money) to perform shared outsourced

projects and achieve common goals.

 Local virtual team. Members of a local virtual workgroup usually belong to the same

company. That company is either big or small, and it has enough resources

(technology is essential) to establish and maintain virtual team workplaces and

organize its employees into a productive remote group.

Virtual team management includes, but not limited to, the following processes:

 Assembling. Probation periods are the first measurements to be applied when starting

with remote teamwork organization. The team leader should decide on those people

who meet all the requirements of probation periods.

37

 Training. During this process, the team leader sets expectations as to future virtual

teaming and then develops and applies a group training methodology to teach the

team members how to meet the expectations.

 Managing. This process means using telecommunication technologies to manage

ongoing tasks and jobs of remote group members.

 Controlling. The team leader establishes performance measures to assess and

evaluate team performance. This person needs to find out whether the team is on the

right track and can achieve project goals on schedule.

These are the major processes of virtual team management. However, there can be subsidiary

processes that allow for a better of understanding the virtual team‘s phenomena.

Advantages and Dis-advantages of Virtual Team Management:

Some of the advantages of virtual team management are (but not limited to) the following:

 Reduced rents and technology savings

 Lower transportation costs and less time spent on commuting

 Instant communication and information exchange

Some of the disadvantages of virtual team management are (but not limited to) the

following:

 Poorer control of virtual groups (this may result in reduced trust in virtual teams),

because there are no direct control tools

 Problems to establish good virtual team leadership (comparing to ―physical‖

team leading)

 Unfitness to the projects which require on-site control and management

How to improve virtual team collaboration

As mentioned, virtual team management offers tangible benefits to your project or business;

still, you have to address some distinct challenges. Many project managers struggle to create

a truly ―collaborative‖ virtual culture.

These two essential steps below can help you build a productive virtual team and improve

remote collaboration.

1. Use a single collaborative system for virtual team management

Make sure that everyone in your remote team uses the same virtual application and database

to manage inbox, chats, to-do lists, shared documents, spreadsheets, and other essentials of

your projects. For example, you can successfully manage your virtual team remotely from

38

anywhere with any device by adopting innovative cloud products such as Citrix

VDI and Cloud QuickBooks Hosting from Apps4Rent.

Remote employees often spread information across multiple systems and tools. For example,

using Gmail for emailing, Zoho for CRM, Slack for real-time communication, and Skype for

video conferencing can be okay to some extent.

However, as your projects grow and you onboard new remote workers, your team has to deal

with multiple data sources and various apps, which will ultimately create clutter and lack of

control of team performance.

2. Enable automation to get more things done faster

As artificial intelligence, IoT, edge computing, and other emerging technologies become

increasingly prevalent; project managers and team leaders seek ways to improve process

management and collaboration in virtual team environments.

Automation is among the simplest ways to help remote teams get rid of routine tasks and

focus on more value-adding activities. It allows for maximizing ROI on human capital

(including virtual teams), while reducing time and effort needed to get things done.

For example, let‘s take online sales and lead generation. Here are at least three things that

workflow automation can offer for remote sales teams and marketers:

1. Simplify lead data capturing by enabling web forms and pop-up invitations as well as

automated follow-up emails and smart notifications for customers. Examples: Insightly CRM,

Zoho, Pipedrive.

2. Shorten total lead time by as much as 35% by allowing for chatbots and intelligent

virtual assistants to serve online prospects and customers. Examples: livechatinc.com,

Zendesk AI-powered chatbot, chatbot.com.

3. Delight customers by gamifying lead generation. The secret here is, instead of wasting

time on cold messages via phone, social media, or email, your sales reps will focus on

analysing customer data. Your team gets insights about what a given prospect is seeking and

what product or service is best to offer. Quizzes, video guides, and interactive HTML5 mini-

games are examples of how you can gamify lead generation and help your local and remote

teams get more deals.

https://www.clouddesktoponline.com/citrix-xen-desktop/
https://www.clouddesktoponline.com/citrix-xen-desktop/
https://www.apps4rent.com/quickbooks-cloud-hosting/
https://mymanagementguide.com/3-ways-artificial-intelligence-can-improve-project-management-by-2024/

39

2.8 CHECK YOUR PROGRESS

1. What are Systems approach, Systems philosophy and Systems analysis in Project

Management?

2. Which are the Four Frames of Organizations?

3. Name any 5 characteristics of organizational culture.

4. What are the key issues faced by Project Managers while working on global projects?

5. Which are the different modes of outsourcing?

Answers to check your progress:

1. Systems approach is a holistic and analytical approach to solving complex problems that

includes using a systems philosophy, systems analysis, and systems management.

Systems philosophy is an overall model for thinking about things as systems. Systems

analysis is a problem-solving approach that requires defining the scope of the system,

dividing it into components, and then identifying and evaluating its problems,

opportunities, constraints, and needs.

2. Structural frame, human resources (HR) frame, political frame, symbolic frame.

3. Member identity, Group emphasis, People focus, Unit integration, Control

4. Communications, Trust, Common work practices, Tools

5. Onshore Software Outsourcing, Offshore Software Outsourcing, Nearshore Software

Outsourcing.

2.9 SUMMARY

 This unit focuses on the systems view of project management and the application of

Information Technology. The analysis helps the organization to provide the perspectives of

structural, hr and political frames. This also helps to understand the conceptual,

developmental, implementational and close-out phases of project life cycle. It also provides

the clarity between project and product development.

2.10 KEYWORDS

 Systems philosophy: It is an overall model for thinking about things as systems.

 Systems analysis: It is a problem-solving approach that requires defining the scope of the

system, dividing it into components, and then identifying and evaluating its problems,

opportunities, constraints, and needs.

40

 Political frame: It addresses organizational and personal politics.

 Matrix organizational structure: It represents the middle ground between functional

and project structures.

 Deliverable: It is a product or service, such as a technical report, a training session, a

piece of hardware, or a segment of software code, produced or provided as part of a

project.

2.11 QUESTIONS FOR SELF STUDY

1. Explain the four frames of organizations and their perspectives.

2. Explain Functional, project and matrix organizational structures with the help of a

diagram.

3. What are the characteristics of organizational culture according to Stephen P. Robbins

and Timothy Judge?

4. Why top management commitment is crucial to project managers?

5. Explain phases of traditional project life cycle with the help of a neat diagram.

6. What the key issues unique to IT industry that has a critical impact on managing IT

projects?

7. Write a brief note on recent trends affecting information technology project

management.

2.12 REFERENCES

1. https://ocw.ui.ac.id/pluginfile.php/13396/mod_resource/content/2/Schwalbe%208th%20-

%20Chapter%2002.pdf

2. https://www.tpptechnology.com/

3. https://mymanagementguide.com/

41

STRUCTURE

3.0 Objectives

3.1 Introduction

3.2 The Management Spectrum

3.2.1 The People

3.2.2 The Product

3.2.3 The Process

3.2.4 The Project

3.3 Software Configuration Management

3.3.1 SCM Scenario, Elements

3.3.2 SCM Process

3.3.3 Configuration Management for WebApps

3.4 Software Testing Strategies

3.4.1 A Strategic approach to software testing

3.4.2 Strategic Issues

3.4.3 Test Strategies for Conventional Software

3.4.4 Validation Testing

3.4.5 System Testing

3.4.6 The Art of Debugging

3.5 The Cleanroom Strategy

3.6 Check your progress

3.7 Summary

3.8 Key words

3.9 Questions for self-study

3.10 References

3.0 OBJECTIVES

After studying this unit, you will be able to:

 Explain the major focusing factors of the management, 4Ps – People, Process,

Product, Project

UNIT-3: SOFTWARE MANAGEMENT CONCEPTS

42

 Identify different kinds of people involved which are stake holders, team leaders,

software team, etc.

 Describe the scope of the project and the ability to decompose the problem

 Explain the SCM scenario with the example of WebApps

 Distinguish the different types of Software Testing Strategies and the implementation

need

 Discuss the debugging strategy and clean room strategy

3.1 INTRODUCTION

 In this unit, we are going to discuss about software management concepts. The

Management Spectrum focuses on the four P‘s: people, product, process, and project. It

emphasizes on the importance of these 4 parameters in building a successful and robust team

and process in software project management.

3.2 THE MANAGEMENT SPECTRUM

Effective software project management focuses on the four P‘s: people, product, process,

and project. The order is not arbitrary. The manager who forgets that software engineering

work is an intensely human endeavor will never have success in project management. A

manager who fails to encourage comprehensive stakeholder communication early in the

evolution of a product risks building an elegant solution for the wrong problem. The manager

who pays little attention to the process runs the risk of inserting competent technical methods

and tools into a vacuum. The manager who embarks without a solid project plan jeopardizes

the success of the project.

3.2.1 THE PEOPLE

According to People Capability Maturity Model (pcmm), the people factor defines the key

factor areas in software development: staffing, communication and coordination, work

environment, performance management, training, compensation, competency analysis and

development, career development, workgroup development, team/culture development, and

others. Organizations that achieve high levels of People-CMM maturity have a higher

likelihood of implementing effective software project management practices.

43

3.2.1.1 THE STAKEHOLDERS

The software process (and every software project) is populated by stakeholders who can

be categorized into one of five constituencies:

1. Senior managers who define the business issues that often have a significant influence

on the project.

2. Project (technical) managers who must plan, motivate, organize, and control the

practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer a product or

application.

4. Customers who specify the requirements for the software to be engineered and other

stakeholders who have a peripheral interest in the outcome.

5. End users who interact with the software once it is released for production use.

Every software project is populated by people who fall within this taxonomy. To be effective,

the project team must be organized in a way that maximizes each person‘s skills and abilities.

And that‘s the job of the team leader.

3.2.1.2 TEAM LEADERS

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders. They simply don‘t have the right mix of people

skills. According to Jerry Weinberg, the expected skills to be present in team leaders are,

 Motivation. The ability to encourage (by ―push or pull‖) technical people to produce

to their best ability.

 Organization. The ability to mold existing processes (or invent new ones) that will

enable the initial concept to be translated into a final product.

 Ideas or innovation. The ability to encourage people to create and feel creative even

when they must work within bounds established for a particular software product or

application.

 Problem solving. An effective software project manager can diagnose the technical

and organizational issues that are most relevant, systematically structure a solution or

properly motivate other practitioners to develop the solution, apply lessons learned

from past projects to new situations, and remain flexible enough to change direction if

initial attempts at problem solution are fruitless.

44

 Managerial identity. A good project manager must take charge of the project. She

must have the confidence to assume control when necessary and the assurance to

allow good technical people to follow their instincts.

 Achievement. A competent manager must reward initiative and accomplishment to

optimize the productivity of a project team. She must demonstrate through her own

actions that controlled risk taking will not be punished.

 Influence and team building. An effective project manager must be able to ―read‖

people; she must be able to understand verbal and nonverbal signals and react to the

needs of the people sending these signals. The manager must remain under control in

high-stress situations.

3.2.1.3 THE SOFTWARE TEAM

The ―best‖ team structure depends on the management style of the organization, the number

of people who will populate the team and their skill levels, and the overall problem difficulty.

Mantei [Man81] describes seven project factors that should be considered when planning the

structure of software engineering teams:

 Difficulty of the problem to be solved

 ―Size‖ of the resultant program(s) in lines of code or function points T

 ime that the team will stay together (team lifetime)

 Degree to which the problem can be modularized

 Required quality and reliability of the system to be built

 Rigidity of the delivery date

 Degree of sociability (communication) required for the project

3.2.2 THE PRODUCT

A software project manager is confronted with a dilemma at the very beginning of a software

project. Quantitative estimates and an organized plan are required, but solid information is

unavailable. A detailed analysis of software requirements would provide necessary

information for estimates, but analysis often takes weeks or even months to complete. Worse,

requirements may be fluid, changing regularly as the project proceeds. Yet, a plan is needed

―now!‖ Like it or not, one must examine the product and the problem it is intended to solve at

the very beginning of the project. At a minimum, the scope of the product must be established

and bounded.

45

3.2.2.1 SOFTWARE SCOPE

The first software project management activity is the determination of software scope. Scope

is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or business

context, and what constraints are imposed as a result of the context?

Information objectives. What customer-visible data objects are produced as output from the

software? What data objects are required for input? Function and performance. What function

does the software perform to transform input data into output? Are any special performance

characteristics to be addressed?

Software project scope must be unambiguous and understandable at the management and

technical levels. A statement of software scope must be bounded. That is, quantitative data

(e.g., number of simultaneous users, target environment, maximum allowable response time)

are stated explicitly, constraints and/or limitations (e.g., product cost restricts memory size)

are noted, and mitigating factors (e.g., desired algorithms are well understood and available

in Java) are described.

3.2.2.2 PROBLEM DECOMPOSITION

Problem decomposition, sometimes called partitioning or problem elaboration, is an activity

that sits at the core of software requirements analysis. During the scoping activity no attempt

is made to fully decompose the problem. Rather, decomposition is applied in two major

areas:

(1) The functionality and content (information) that must be delivered and

(2) The process that will be used to deliver it.

Human beings tend to apply a divide-and-conquer strategy when they are confronted with a

complex problem. Stated simply, a complex problem is partitioned into smaller problems that

are more manageable. This is the strategy that applies as project planning begins. Software

functions, described in the statement of scope, are evaluated and refined to provide more

detail prior to the beginning of estimation.

Example:

As an example, consider a project that will build a new word-processing product. Among the

unique features of the product are continuous voice as well as virtual keyboard input via a

multi-touch screen, extremely sophisticated ―automatic copy edit‖ features, page layout

46

capability, automatic indexing and table of contents, and others. The project manager must

first establish a statement of scope that bounds these features (as well as other more mundane

functions such as editing, file management, and document production). For example, will

continuous voice input require that the product be ―trained‖ by the user? Specifically, what

capabilities will the copy edit feature provide? Just how sophisticated will the page layout

capability be and will it encompass the capabilities implied by a multitouch screen?

As the statement of scope evolves, a first level of partitioning naturally occurs. The project

team learns that the marketing department has talked with potential customers and found that

the following functions should be part of automatic copy editing:

(1) Spell checking,

(2) Sentence grammar checking,

(3) Reference checking for large documents (e.g., Is a reference to a bibliography entry

found in the list of entries in the bibliography?),

(4) The implementation of a style sheet feature that imposed consistency across a

document, and

(5) Section and chapter reference validation for large documents.

 Each of these features represents a sub-function to be implemented in software. Each can be

further refined if the decomposition will make planning easier.

3.2.3 THE PROCESS

The purpose of the process element is, the team must decide which process model is most

appropriate for

(1) The customers who have requested the product and the people who will do the work,

(2) The characteristics of the product itself, and

(3) The project environment in which the software team works.

When a process model has been selected, the team then defines a preliminary project plan

based on the set of process framework activities. Once the preliminary plan is established,

process decomposition begins. That is, a complete plan, reflecting the work tasks required to

populate the framework activities must be created.

47

3.2.3.1 PROCESS DECOMPOSITION

A software team should have a significant degree of flexibility in choosing the software

process model that is best for the project and the software engineering tasks that populate the

process model once it is chosen. Once the process model has been chosen, the process

framework is adapted to it.

Process decomposition commences when the project manager asks, ―How do we accomplish

this framework activity?‖ For example, a small, relatively simple project might require the

following work tasks for the communication activity:

1. Develop list of clarification issues.

2. Meet with stakeholders to address clarification issues.

3. Jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

These events might occur over a period of less than 48 hours. They represent a process

decomposition that is appropriate for the small, relatively simple project.

3.2.4 THE PROJECT

In order to manage a successful software project, one has to understand what can go wrong so

that problems can be avoided. In an excellent paper on software projects, John Reel [Ree99]

defines 10 signs that indicate that an information systems project is in jeopardy:

1. Software people don‘t understand their customer‘s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4. The chosen technology changes.

5. Business needs change [or are ill defined].

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained].

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons learned.

Reel [Ree99] suggests a five-part common sense approach to software projects:

48

1. Start on the right foot. This is accomplished by working hard (very hard) to understand

the problem that is to be solved and then setting realistic objectives and expectations for

everyone who will be involved in the project. It is reinforced by building the right team

and giving the team the autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then slowly disintegrate.

To maintain momentum, the project manager must provide incentives to keep turnover of

personnel to an absolute minimum, the team should emphasize quality in every task it

performs, and senior management should do everything possible to stay out of the team‘s

way.

3. Track progress. For a software project, progress is tracked as work products (e.g.,

models, source code, sets of test cases) are produced and approved (using technical

reviews) as part of a quality assurance activity. In addition, software process and project

measures can be collected and used to assess progress against averages developed for the

software development organization.

4. Make smart decisions. In essence, the decisions of the project manager and the software

team should be to ―keep it simple.‖ Whenever possible, decide to use commercial off-the-

shelf software or existing software components or patterns, decide to avoid custom

interfaces when standard approaches are available, decide to identify and then avoid

obvious risks, and decide to allocate more time than you think is needed to complex or

risky tasks (you‘ll need every minute).

5. Conduct a post-mortem analysis. Establish a consistent mechanism for extracting lessons

learned for each project. Evaluate the planned and actual schedules, collect and analyze

software project metrics, get feedback from team members and customers, and record

findings in written form.

3.3 SOFTWARE CONFIGURATION MANAGEMENT

The output of the software process is information that may be divided into three broad

categories:

(1) Computer programs (both source level and executable forms),

(2) Work products that describe the computer programs (targeted at various

stakeholders), and

(3) Data or content (contained within the program or external to it).

49

The items that comprise all information produced as part of the software process are

collectively called a software configuration.

3.3.1 SCM SCENARIO

A typical CM operational scenario involves a project manager who is in charge of a software

group, a configuration manager who is in charge of the CM procedures and policies, the

software engineers who are responsible for developing and maintaining the software product,

and the customer who uses the product. In the scenario, assume that the product is a small

one involving about 15,000 lines of code being developed by a team of six people. (Note that

other scenarios of smaller or larger teams are possible, but, in essence, there are generic

issues that each of these projects face concerning CM.)

At the operational level, the scenario involves various roles and tasks. For the project

manager, the goal is to ensure that the product is developed within a certain time frame.

Hence, the manager monitors the progress of development and recognizes and reacts to

problems. This is done by generating and analyzing reports about the status of the software

system and by performing reviews on the system

The goals of the configuration manager are to ensure that procedures and policies for

creating, changing, and testing of code are followed, as well as to make information about the

project accessible. To implement techniques for maintaining control over code changes, this

manager introduces mechanisms for making official requests for changes, for evaluating them

(via a Change Control Board that is responsible for approving changes to the software

system), and for authorizing changes. The manager creates and disseminates task lists for the

engineers and basically creates the project context. Also, the manager collects statistics about

components in the software system, such as information determining which components in

the system are problematic.

For the software engineers, the goal is to work effectively. This means engineers do not

unnecessarily interfere with each other in the creation and testing of code and in the

production of supporting work products. But, at the same time, they try to communicate and

coordinate efficiently. Specifically, engineers use tools that help build a consistent software

product. They communicate and coordinate by notifying one another about tasks required and

tasks completed. Changes are propagated across each other‘s work by merging files.

Mechanisms exist to ensure that, for components that undergo simultaneous changes, there is

some way of resolving conflicts and merging changes. A history is kept of the evolution of all

50

components of the system along with a log with reasons for changes and a record of what

actually changed. The engineers have their own workspace for creating, changing, testing,

and integrating code. At a certain point, the code is made into a baseline from which further

development continues and from which variants for other target machines are made.

The customer uses the product. Since the product is under CM control, the customer follows

formal procedures for requesting changes and for indicating bugs in the product.

Ideally, a CM system used in this scenario should support all these roles and tasks; that is, the

roles determine the functionality required of a CM system. The project manager sees CM as

an auditing mechanism; the configuration manager sees it as a controlling, tracking, and

policy making mechanism; the software engineer sees it as a changing, building, and access

control mechanism; and the customer sees it as a quality assurance mechanism.

SCM ELEMENTS

In her comprehensive white paper on software configuration management, Susan Dart

[Dar01] identifies four important elements that should exist when a configuration

management system is developed:

 Component elements—a set of tools coupled within a file management system (e.g., a

database) that enables access to and management of each software configuration item.

 Process elements—a collection of actions and tasks that define an effective approach to

change management (and related activities) for all constituencies involved in the

management, engineering, and use of computer software.

 Construction elements—a set of tools that automate the construction of software by

ensuring that the proper set of validated components (i.e., the correct version) have been

assembled.

 Human elements—a set of tools and process features (encompassing other CM elements)

used by the software team to implement effective SCM. These elements (to be discussed in

more detail in later sections) are not mutually exclusive.

For example, component elements work in conjunction with construction elements as the

software process evolves. Process elements guide many human activities that are related to

SCM and might therefore be considered human elements as well.

51

3.3.2 SCM PROCESS

The software configuration management process defines a series of tasks that have four

primary objectives:

1. To identify all items that collectively define the software configuration,

2. To manage changes to one or more of these items,

3. To facilitate the construction of different versions of an application, and

4. To ensure that software quality is maintained as the configuration evolves over time.

A process that achieves these objectives need not be bureaucratic or ponderous, but it must be

characterized in a manner that enables a software team to develop answers to a set of

complex questions:

 How does a software team identify the discrete elements of a software configuration?

 How does an organization manage the many existing versions of a program (and its

documentation) in a manner that will enable change to be accommodated efficiently?

 How does an organization control changes before and after software is released to a

customer?

 Who has responsibility for approving and ranking requested changes?

 How can we ensure that changes have been made properly?

 What mechanism is used to apprise others of changes that are made?

These questions lead to the definition of five SCM tasks—identification, version control,

change control, configuration auditing, and reporting—illustrated in Figure below.

Fig 3.1: Layers of SCM process

52

Referring to the figure, SCM tasks can viewed as concentric layers. SCIs flow outward

through these layers throughout their useful life, ultimately becoming part of the software

configuration of one or more versions of an application or system. As an SCI moves through

a layer, the actions implied by each SCM task may or may not be applicable. For example,

when a new SCI is created, it must be identified. However, if no changes are requested for the

SCI, the change control layer does not apply. The SCI is assigned to a specific version of the

software (version control mechanisms come into play). A record of the SCI (its name,

creation date, version designation, etc.) is maintained for configuration auditing purposes and

reported to those with a need to know. In the sections that follow, we examine each of these

SCM process layers in more detail.

3.3.3 CONFIGURATION MANAGEMENT FOR WEBAPPS

Content. A typical WebApp contains a vast array of content—text, graphics, applets, scripts,

audio/video files, forms, active page elements, tables, streaming data, and many others. The

challenge is to organize this sea of content into a rational set of configuration objects and

then establish appropriate configuration control mechanisms for these objects. One approach

is to model the WebApp content using conventional data modeling techniques attaching a set

of specialized properties to each object. The static/dynamic nature of each object and its

projected longevity (e.g., temporary, fixed existence, or permanent object) are examples of

properties that are required to establish an effective SCM approach. For example, if a content

item is changed hourly, it has temporary longevity. The control mechanisms for this item

would be different (less formal) than those applied for a forms component that is a permanent

object.

People. Because a significant percentage of WebApp development continues to be conducted

in an ad hoc manner, any person involved in the WebApp can (and often does) create content.

Many content creators have no software engineering background and are completely unaware

of the need for configuration management. As a consequence, the application grows and

changes in an uncontrolled fashion.

Scalability. The techniques and controls applied to a small WebApp do not scale upward

well. It is not uncommon for a simple WebApp to grow significantly as interconnections with

existing information systems, databases, data warehouses, and portal gateways are

implemented. As size and complexity grow, small changes can have far-reaching and

53

unintended effects that can be problematic. Therefore, the rigor of configuration control

mechanisms should be directly proportional to application scale.

3.3.3.1 WEBAPP CONFIGURATION OBJECTS

WebApps encompass a broad range of configuration objects—content objects (e.g., text,

graphics, images, video, audio), functional components (e.g., scripts, applets), and interface

objects (e.g., COM or CORBA). WebApp objects can be identified (assigned file names) in

any manner that is appropriate for the organization. However, the following conventions are

recommended to ensure that cross-platform compatibility is maintained: filenames should be

limited to 32 characters in length, mixedcase or all-caps names should be avoided, and the

use of underscores in file names should be avoided. In addition, URL references (links)

within a configuration object should always use relative paths (e.g.,

../products/alarmsensors.html).

All WebApp content has format and structure. Internal file formats are dictated by the

computing environment in which the content is stored. However, rendering format (often

called display format) is defined by the aesthetic style and design rules established for the

WebApp. Content structure defines a content architecture; that is, it defines the way in which

content objects are assembled to present meaningful information to an end user.

3.3.3.2 CONTENT MANAGEMENT

Content management is related to configuration management in the sense that a content

management system (CMS) establishes a process (supported by appropriate tools) that

acquires existing content (from a broad array of WebApp configuration objects), structures it

in a way that enables it to be presented to an end user, and then provides it to the client-side

environment for display.

The most common use of a content management system occurs when a dynamic WebApp is

built. Dynamic WebApps create Web pages ―on-the-fly.‖ That is, the user typically queries

the WebApp requesting specific information. The WebApp queries a database, formats the

information accordingly, and presents it to the user. For example, a music company provides

a library of CDs for sale. When a user requests a CD or its e-music equivalent, a database is

queried and a variety of information about the artist, the CD (e.g., its cover image or

graphics), the musical content, and sample audio are all downloaded and configured into a

54

standard content template. The resultant Web page is built on the server side and passed to

the client-side browser for examination by the end user

In the most general sense, a CMS ―configures‖ content for the end user by invoking three

integrated subsystems: a collection subsystem, a management subsystem, and a publishing

subsystem.

3.3.3.3 CHANGE MANAGEMENT

To implement effective change management within the ―code and go‖ philosophy that

continues to dominate WebApp development, the conventional change control process must

be modified. Each change should be categorized into one of four classes:

Class 1— a content or function change that corrects an error or enhances local content or

functionality

Class 2—a content or function change that has an impact on other content objects or

functional components

Class 3—a content or function change that has a broad impact across a WebApp (e.g., major

extension of functionality, significant enhancement or reduction in content, major required

changes in navigation)

Class 4—a major design change (e.g., a change in interface design or navigation approach)

that will be immediately noticeable to one or more categories of user

Once the requested change has been categorized, it can be processed according to the

algorithm set.

3.3.3.4 VERSION CONTROL

In an uncontrolled site where multiple authors have access to edit and contribute, the

potential for conflict and problems arises—more so when these authors work from different

offices at different times of day and night. One may spend the day improving the file

index.html for a customer. After changes are done, another developer who works at home

after hours, or in another office, may spend the night uploading their own newly revised

version of the file index.html, completely overwriting previous work with no way to get it

back! To avoid it, a version control process is required…

1. A central repository for the WebApp project should be established. The repository

will hold current versions of all WebApp configuration objects (content, functional

components, and others).

55

2. Each Web engineer creates his or her own working folder. The folder contains those

objects that are being created or changed at any given time

3. The clocks on all developer workstations should be synchronized. This is done to

avoid overwriting conflicts when two developers make updates that are very close to

one another in time.

4. As new configuration objects are developed or existing objects are changed, they are

imported into the central repository. The version control tool (see discussion of CVS

in the sidebar) will manage all check-in and check-out functions from the working

folders of each WebApp developer. The tool will also provide automatic e-mail

updates to all interested parties when changes to the repository are made.

5. As objects are imported or exported from the repository, an automatic, timestamped

log message is made. This provides useful information for auditing and can become

part of an effective reporting scheme.

The version control tool maintains different versions of the WebApp and can revert to an

older version if required.

3.3.3.5 AUDITING AND REPORTING

In the interest of agility, the auditing and reporting functions are deemphasized in Web

engineering work. However, they are not eliminated altogether. All objects that are checked

into or out of the repository are recorded in a log that can be reviewed at any point in time. A

complete log report can be created so that all members of the WebApp team have a

chronology of changes over a defined period of time. In addition, an automated e-mail

notification (addressed to those developers and stakeholders who have interest) can be sent

every time an object is checked in or out of the repository.

3.4 SOFTWARE TESTING STRATEGIES

3.4.1 A Strategic Approach to Software Testing

Testing is a set of activities that can be planned in advance and conducted systematically. For

this reason a template for software testing—a set of steps into which you can place specific

test case design techniques and testing methods—should be defined for the software process.

A number of software testing strategies have been proposed in the literature. A template is

provided and all have the following generic characteristics:

56

 To perform effective testing, one should conduct effective technical reviews. By

doing this, many errors will be eliminated before testing commences.

 Testing begins at the component level and works ―outward‖ toward the integration of

the entire computer-based system.

 Different testing techniques are appropriate for different software engineering

approaches and at different points in time.

 Testing is conducted by the developer of the software and (for large projects) an

independent test group.

 Testing and debugging are different activities, but debugging must be accommodated

in any testing strategy.

A strategy for software testing must accommodate low-level tests that are necessary to verify

that a small source code segment has been correctly implemented as well as high-level tests

that validate major system functions against customer requirements. A strategy should

provide guidance for the practitioner and a set of milestones for the manager. Because the

steps of the test strategy occur at a time when deadline pressure begins to rise, progress must

be measurable and problems should surface as early as possible.

3.4.1.1 VERIFICATION AND VALIDATION

Verification refers to the set of tasks that ensure that software correctly implements a specific

function. Validation refers to a different set of tasks that ensure that the software that has

been built is traceable to customer requirements.

Verification and validation includes a wide array of SQA activities: technical reviews, quality

and configuration audits, performance monitoring, simulation, feasibility study,

documentation review, database review, algorithm analysis, development testing, usability

testing, qualification testing, acceptance testing, and installation testing. Although testing

plays an extremely important role in V&V, many other activities are also necessary.

3.4.1.2 SOFTWARE TESTING STRATEGY – THE BIG PICTURE

The software process may be viewed as the spiral illustrated in Figure 3.2. Initially, system

engineering defines the role of software and leads to software requirements analysis, where

the information domain, function, behaviour, performance, constraints, and validation criteria

for software are established. Moving inward along the spiral, you come to design and finally

57

to coding. To develop computer software, you spiral inward (counter clockwise) along

streamlines that decrease the level of abstraction on each turn.

Figure – 3.2 – Software Testing Strategy

A strategy for software testing may also be viewed in the context of the spiral (Figure 3.2).

Unit testing begins at the vortex of the spiral and concentrates on each unit (e.g., component,

class, or WebApp content object) of the software as implemented in source code. Testing

progresses by moving outward along the spiral to integration testing, where the focus is on

design and the construction of the software architecture. Taking another turn outward on the

spiral, you encounter validation testing, where requirements established as part of

requirements modeling are validated against the software that has been constructed. Finally,

arrives system testing, where the software and other system elements are tested as a whole.

To test computer software, you spiral out in a clockwise direction along streamlines that

broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the context of

software engineering is actually a series of four steps that are implemented sequentially.

The steps are shown in Figure 3.3. Initially, tests focus on each component individually,

ensuring that it functions properly as a unit. Hence, the name unit testing. Unit testing makes

heavy use of testing techniques that exercise specific paths in a component‘s control structure

to ensure complete coverage and maximum error detection. Next, components must be

assembled or integrated to form the complete software package. Integration testing addresses

the issues associated with the dual problems of verification and program construction. Test

case design techniques that focus on inputs and outputs are more prevalent during integration,

58

although techniques that exercise specific program paths may be used to ensure coverage of

major control paths. After the software has been integrated (constructed), a set of high-order

tests is conducted. Validation criteria (established during requirements analysis) must be

evaluated. Validation testing provides final assurance that software meets all informational,

functional, behavioural, and performance requirements.

Figure 3.3 – Software Testing Steps

The last high-order testing step falls outside the boundary of software engineering and into

the broader context of computer system engineering. Software, once validated, must be

combined with other system elements (e.g., hardware, people, databases). System testing

verifies that all elements mesh properly and that overall system function/performance is

achieved.

3.4.2 STRATEGIC ISSUES

According to Tom Gilb a software testing strategy will succeed when software testers:

Specify product requirements in a quantifiable manner long before testing commences.

Although the overriding objective of testing is to find errors, a good testing strategy also

assesses other quality characteristics such as portability, maintainability, and usability. These

should be specified in a way that is measurable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing should be stated in

measurable terms. For example, test effectiveness, test coverage, meantime-to-failure, the

59

cost to find and fix defects, remaining defect density or frequency of occurrence, and test

work-hours should be stated within the test plan.

Understand the users of the software and develop a profile for each user category. Use cases

that describe the interaction scenario for each class of user can reduce overall testing effort by

focusing testing on actual use of the product.

Develop a testing plan that emphasizes “rapid cycle testing.” Gilb recommends that a

software team ―learn to test in rapid cycles (2 percent of project effort) of customer-useful, at

least field ‗trialable,‘ increments of functionality and/or quality improvement.‖ The feedback

generated from these rapid cycle tests can be used to control quality levels and the

corresponding test strategies.

Build “robust” software that is designed to test itself. Software should be designed in a

manner that uses antibugging techniques. That is, software should be capable of diagnosing

certain classes of errors. In addition, the design should accommodate automated testing and

regression testing.

Use effective technical reviews as a filter prior to testing. Technical reviews can be as

effective as testing in uncovering errors. For this reason, reviews can reduce the amount of

testing effort that is required to produce high quality software.

Conduct technical reviews to assess the test strategy and test cases themselves. Technical

reviews can uncover inconsistencies, omissions, and outright errors in the testing approach.

This saves time and also improves product quality.

Develop a continuous improvement approach for the testing process. The test strategy should

be measured. The metrics collected during testing should be used as part of a statistical

process control approach for software testing.

3.4.3 TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

A testing strategy that is chosen by most software teams falls between the two extremes. It

takes an incremental view of testing, beginning with the testing of individual program units,

moving to tests designed to facilitate the integration of the units, and culminating with tests

that exercise the constructed system. Each of these classes of tests is described in the sections

that follow.

60

UNIT TESTING

Unit testing focuses verification effort on the smallest unit of software design—the software

component or module. Using the component-level design description as a guide, important

control paths are tested to uncover errors within the boundary of the module. The relative

complexity of tests and the errors those tests uncover is limited by the constrained scope

established for unit testing. The unit test focuses on the internal processing logic and data

structures within the boundaries of a component. This type of testing can be conducted in

parallel for multiple components.

INTEGRATION TESTING

Integration testing is a systematic technique for constructing the software architecture while

at the same time conducting tests to uncover errors associated with interfacing. The objective

is to take unit-tested components and build a program structure that has been dictated by

design.

There is often a tendency to attempt non incremental integration; that is, to construct the

program using a ―big bang‖ approach. All components are combined in advance. The entire

program is tested as a whole. And chaos usually results! A set of errors is encountered.

Correction is difficult because isolation of causes is complicated by the vast expanse of the

entire program. Once these errors are corrected, new ones appear and the process continues in

a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The program is constructed

and tested in small increments, where errors are easier to isolate and correct; interfaces are

more likely to be tested completely; and a systematic test approach may be applied.

3.4.4 VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a package, and

interfacing errors have been uncovered and corrected. At the validation or system level, the

distinction between conventional software, object-oriented software, and WebApps

disappears. Testing focuses on user-visible actions and user-recognizable output from the

system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is that

validation succeeds when software functions in a manner that can be reasonably expected by

61

the customer. At this point a battle-hardened software developer might protest: ―Who or what

is the arbiter of reasonable expectations?‖ If a Software Requirements Specification has been

developed, it describes all user-visible attributes of the software and contains a Validation

Criteria section that forms the basis for a validation-testing approach.

After each validation test case has been conducted, one of two possible conditions exists:

1. The function or performance characteristic conforms to specification and is accepted

or

2. A deviation from specification is uncovered and a deficiency list is created.

Deviations or errors discovered at this stage in a project can rarely be corrected prior to

scheduled delivery. It is often necessary to negotiate with the customer to establish a method

for resolving deficiencies.

3.4.5 SYSTEM TESTING

System testing is actually a series of different tests whose primary purpose is to fully exercise

the computer-based system. Although each test has a different purpose, all work to verify that

system elements have been properly integrated and perform allocated functions. In the

sections that follow, I discuss the types of system tests that are worthwhile for software-based

systems.

3.4.5.1 RECOVERY TESTING

Recovery testing is a system test that forces the software to fail in a variety of ways and

verifies that recovery is properly performed. If recovery is automatic (performed by the

system itself), re-initialization, check-pointing mechanisms, data recovery, and restart are

evaluated for correctness. If recovery requires human intervention, the mean-time-to-repair

(MTTR) is evaluated to determine whether it is within acceptable limits

3.4.5.2 SECURITY TESTING

Security testing attempts to verify that protection mechanisms built into a system will, in fact,

protect it from improper penetration. During security testing, the tester plays the role(s) of the

individual who desires to penetrate the system. Anything goes! The tester may attempt to

acquire passwords through external clerical means; may attack the system with custom

software designed to break down any defenses that have been constructed; may overwhelm

the system, thereby denying service to others; may purposely cause system errors, hoping to

62

penetrate during recovery; may browse through insecure data, hoping to find the key to

system entry.

Given enough time and resources, good security testing will ultimately penetrate a system.

The role of the system designer is to make penetration cost more than the value of the

information that will be obtained.

3.4.5.3 STRESS TESTING

Stress testing executes a system in a manner that demands resources in abnormal quantity,

frequency, or volume. For example, (1) special tests may be designed that generate ten

interrupts per second, when one or two is the average rate, (2) input data rates may be

increased by an order of magnitude to determine how input functions will respond, (3) test

cases that require maximum memory or other resources are executed, (4) test cases that may

cause thrashing in a virtual operating system are designed, (5) test cases that may cause

excessive hunting for disk-resident data are created. Essentially, the tester attempts to break

the program.

A variation of stress testing is a technique called sensitivity testing. In some situations (the

most common occur in mathematical algorithms), a very small range of data contained within

the bounds of valid data for a program may cause extreme and even erroneous processing or

profound performance degradation. Sensitivity testing attempts to uncover data combinations

within valid input classes that may cause instability or improper processing.

3.4.5.4 PERFORMANCE TESTING

Performance testing is designed to test the run-time performance of software within the

context of an integrated system. Performance testing occurs throughout all steps in the testing

process. Even at the unit level, the performance of an individual module may be assessed as

tests are conducted. However, it is not until all system elements are fully integrated that the

true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both hardware and

software instrumentation. That is, it is often necessary to measure resource utilization (e.g.,

processor cycles) in an exacting fashion. External instrumentation can monitor execution

intervals, log events (e.g., interrupts) as they occur, and sample machine states on a regular

basis. By instrumenting a system, the tester can uncover situations that lead to degradation

and possible system failure.

63

3.4.5.5 DEPLOYMENT TESTING

In many cases, software must execute on a variety of platforms and under more than one

operating system environment. Deployment testing, sometimes called configuration testing,

exercises the software in each environment in which it is to operate. In addition, deployment

testing examines all installation procedures and specialized installation software (e.g.,

―installers‖) that will be used by customers, and all documentation that will be used to

introduce the software to end users.

As an example, consider the Internet-accessible version of SafeHome software that would

allow a customer to monitor the security system from remote locations. The SafeHome

WebApp must be tested using all Web browsers that are likely to be encountered. A more

thorough deployment test might encompass combinations of Web browsers with various

operating systems (e.g., Linux, Mac OS, Windows). Because security is a major issue, a

complete set of security tests would be integrated with the deployment test.

3.4.6 THE ART OF DEBUGGING

Debugging is not testing but often occurs as a consequence of testing. Referring to Figure 3.4,

the debugging process begins with the execution of a test case. Results are assessed and a

lack of correspondence between expected and actual performance is encountered. In many

cases, the noncorresponding data are a symptom of an underlying cause as yet hidden. The

debugging process attempts to match symptom with cause, thereby leading to error

correction.

Figure 3.4 – Debugging Process

64

Below given are some of the characteristics of the bugs that would provide some clues:

1. The symptom and the cause may be geographically remote. That is, the symptom may

appear in one part of a program, while the cause may actually be located at a site that is

far removed. Highly coupled components exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.

3. The symptom may actually be caused by non-errors (e.g., round-off inaccuracies).

4. The symptom may be caused by human error that is not easily traced

5. The symptom may be a result of timing problems, rather than processing problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time application

in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded systems that

couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks running

on different processors

3.4.6.1 CORRECTING THE ERROR

Once a bug has been found, it must be corrected. But, as we have already noted, the

correction of a bug can introduce other errors and therefore do more harm than good. Van

Vleck suggests three simple questions that you should ask before making the ―correction‖

that removes the cause of a bug:

 Is the cause of the bug reproduced in another part of the program? In many situations,

a program defect is caused by an erroneous pattern of logic that may be reproduced

elsewhere. Explicit consideration of the logical pattern may result in the discovery of

other errors.

 What ―next bug‖ might be introduced by the fix I‘m about to make? Before the

correction is made, the source code (or, better, the design) should be evaluated to

assess coupling of logic and data structures. If the correction is to be made in a highly

coupled section of the program, special care must be taken when any change is made.

 What could we have done to prevent this bug in the first place? This question is the

first step toward establishing a statistical software quality assurance approach

(Chapter 16). If you correct the process as well as the product, the bug will be

removed from the current program and may be eliminated from all future programs.

65

3.5 THE CLEANROOM STRATEGY

The philosophy behind cleanroom software engineering is to develop code increments

that are right the first time and verify their correctness before testing, rather than relying on

costly defect removal processes. Cleanroom software engineering involves the integrated use

of software engineering modeling, program verification, and statistical software quality

assurance. Under cleanroom software engineering, the analysis and design models are created

using a box structure representation (black-box, state box, and clear box). A box encapsulates

some system component at a specific level of abstraction. Correctness verification is applied

once the box structure design is complete. Once correctness has been verified for each box

structure, statistical usage testing commences. This involves defining a set of usage scenarios

and determining the probability of use for each scenario. Random data is generated which

conform to the usage probabilities. The resulting error records are analysed, and the

reliability of the software is determined for the software component.

Distinguishing Characteristics of Cleanroom Techniques

 Makes extensive use of statistical quality control

 Verifies design specification using mathematically-based proof of correctness

 Relies heavily on statistical use testing to uncover high impact errors

Cleanroom Strategy

 Increment planning. The project plan is built around the incremental strategy.

 Requirements gathering. customer requirements are refined for each increment.

 Box structure specification. Box structures isolate and separate the definition of

behaviour, data, and procedures at each level of refinement.

 Formal design. Specifications (black-boxes) are iteratively refined to become

architectural designs (state-boxes) and component-level designs (clear boxes).

 Correctness verification. Correctness questions are asked and answered and followed

by formal mathematical verification when required.

 Code generation, inspection, verification. Box structures are translated into program

language; inspections are used to ensure conformance of code and boxes, as well as

syntactic correctness of code; followed by correctness verification of the code.

 Statistical test planning. A suite of test cases is created to match the probability

distribution of the projected product usage pattern.

66

 Statistical use testing. A statistical sample of all possible test cases is used rather than

exhaustive testing.

 Certification. Once verification, inspection, and usage testing are complete and all

defects removed, the increment is certified as ready for integration.

3.6 CHECK YOUR PROGRESS

1. What is the process each manager follows during the life of a project is known as

A. Project Management

B. Project Management Life Cycle

C. Manager life cycle

D. All of the mentioned

2. What is the abbreviation of PM-CMM?

A. product management capability maturity model

B. process management capability maturity model

C. people management capability maturity model

D. project management capability maturity model

3. Software Configuration Management can be administered in several ways. These include

a) A single software configuration management team for the whole organization

b) A separate configuration management team for each project

c) Software Configuration Management distributed among the project members

d) All of the mentioned

4. The main aim of Software Configuration Management (SCM) is _____

a. Identify change

b. Control change

c. To ensure that the change is being properly implemented

d. All of these

e. None of these

5. Identify the term which is not related to testing?

a. Failure

b. Error

c. Test Case

d. Test Bot

https://t4tutorials.com/software-process-models-mcqs-questions-answers/
https://t4tutorials.com/software-project-management-multiple-choice-questions/

67

6. Which of the following is not a valid phase of SDLC (Software Development Life

Cycle)?

a. Testing Phase

b. Requirement Phase

c. Deployment phase

d. Testing closure

Answers to check your progress:

1. B

2. C

3. A

4. D

5. D

6. D

3.7 SUMMARY

The Management Spectrum focuses on the four P‘s: people, product, process, and

project. It emphasizes on the importance of these 4 parameters in building a successful and

robust team and process in software project management.

The software configuration management process identifies the functional and physical

attributes of software at critical points in time, and implements procedures to control changes

to an identified attribute with the objective of maintaining software integrity and traceability

throughout the software life cycle.

Software Testing Strategies include set of guidelines that explains test design and determines

how testing needs to be done. Also it includes Components of Test plan Test plan id, features

to be tested, test techniques, testing tasks, features pass or fail criteria, test deliverables,

responsibilities, and schedule, etc.

3.8 KEYWORDS

 Project scope: It is the common understanding among stakeholders about what goes into

a project and the factors that define its success.

 Problem decomposition: It is an activity that sits at the core of software requirements

analysis.

 Stakeholders: They are those with an interest in your project's outcome.

68

 Software Configuration Management: This is a process to systematically manage,

organize, and control the changes in the documents, codes, and other entities during the

Software Development Life Cycle.

3.9 QUESTIONS FOR SELF STUDY

1. Who are the different categories people who play a major role in Management spectrum?

Explain each one's role briefly.

2. Why is it important to define the scope of the product?

3. What are the steps to be followed while defining the process?

4. Explain five-part common sense approach to software projects

5. Describe explain SCM Scenario along with elements.

6. What are the four primary objectives of SCM?

7. Briefly explain the different phases of Configuration Management.

8. Define each of the topic given below:

a. Big Picture of Software Testing Strategies

b. Unit Testing and Integration Testing in OO context

c. Test Strategeis for WebApps

d. Distinguish between Recovery testing, Security Testing, Performance Testing,

Deployment Testing

e. The cleanroom strategy

3.10 REFERENCES

1. https://ocw.ui.ac.id/pluginfile.php/13396/mod_resource/content/2/Schwalbe%208th%20-

%20Chapter%2002.pdf

2. https://www.tpptechnology.com/

3. https://mymanagementguide.com/

69

STRUCTURE

4.0 Objectives

4.1 Introduction

4.2 Quality Concepts

4.2.1 Software Quality

4.2.2 Achieving Software Quality

4.3 Review Techniques

4.3.1 Cost Impact of Software Defects

4.3.2 Review Metrics and their Use

4.3.3 Informal Reviews

4.3.4 Formal Reviews

4.4 Software Quality Assurance - SQA

4.4.1 Elements of SQA

4.4.2 Statistical SQA

4.4.3 Software Reliability

4.4.4 ISO 9000 Quality Standards

4.5 Check your progress

4.6 Summary

4.7 Key words

4.8 Questions for self-study

4.9 References

4.0 OBJECTIVES

After studying this unit, you will be able to:

 Describe quality management processes, SQA concepts and principles

 Distinguish between various activities of quality planning, quality management and

quality control

 Understand the importance and standards of quality management process and their

impact on final products.

UNIT-4: SOFTWARE QUALITY MANAGEMENT

70

4.1 INTRODUCTION

 In this unit, we are going to discuss about software quality management. A wide variety

of software quality dimensions and factors have been proposed over the years. All try to

define a set of characteristics that, if achieved, will lead to high software quality. McCall‘s

and the ISO 9126 quality factors establish characteristics such as reliability, usability,

maintainability, functionality, and portability as indicators that quality exists.

4.2 QUALITY CONCEPTS

Software quality product is defined in term of its fitness of purpose. That is, a quality

product does precisely what the users want it to do. For software products, the fitness of use

is generally explained in terms of satisfaction of the requirements laid down in the SRS

document. Although "fitness of purpose" is a satisfactory interpretation of quality for many

devices such as a car, a table fan, a grinding machine, etc., for software products, "fitness of

purpose" is not a wholly satisfactory definition of quality.

Software Quality Assurance (SQA) is a planned and systematic pattern of activities that are

necessary to provide a high degree of confidence regarding quality of a product. It actually

provides or gives a quality assessment of quality control activities and helps in determining

validity of data or procedures for determining quality. It generally monitors software

processes and methods that are used in a project to ensure or assure and maintain quality of

software.

4.2.1 SOFTWARE QUALITY

The relevancy of Software quality in modern times is increasing like anything. Nowadays

software development companies are more focussed on deploying new codes into production

even on an hourly basis without any proper software testing. That‘s creating a chaotic

environment in the market.

People often fail to understand that speed has minimal value if there is no quality. let‘s learn

how to ensure software quality in every build

What is software quality? The quality of software can be defined as the ability of the software

to function as per user requirement. When it comes to software products it must satisfy all

the functionalities written down in the SRS document.

https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/

71

Key aspects that conclude software quality include,

 Good design – It‘s always important to have a good and aesthetic design to please

users

 Reliability – Be it any software it should be able to perform the functionality

impeccably without issues

 Durability- Durability is a confusing term, In this context, durability means the

ability of the software to work without any issue for a long period of time.

 Consistency – Software should be able to perform consistently over platform and

devices

 Maintainability – Bugs associated with any software should be able to capture and

fix quickly and news tasks and enhancement must be added without any trouble

 Value for money – customer and companies who make this app should feel that the

money spent on this app has not done to waste.

ISO 9126 QUALITY FACTORS

The ISO 9126 standard was developed in an attempt to identify the key quality attributes

for computer software. The standard identifies six key quality attributes:

 Functionality. The degree to which the software satisfies stated needs as indicated

by the following sub attributes: suitability, accuracy, interoperability, compliance,

and security.

 Reliability. The amount of time that the software is available for use as indicated

by the following sub attributes: maturity, fault tolerance, recoverability

 Usability. The degree to which the software is easy to use as indicated by the

following sub attributes: understandability, learnability, operability.

 Efficiency. The degree to which the software makes optimal use of system

resources as indicated by the following sub attributes: time behavior, resource

behavior.

 Maintainability. The ease with which repair may be made to the software as

indicated by the following sub attributes: analysability, changeability, stability,

testability.

 Portability. The ease with which the software can be transposed from one

environment to another as indicated by the following sub attributes: adaptability,

installability, conformance, replaceability

72

Like other software quality factors discussed in the preceding subsections, the ISO 9126

factors do not necessarily lend themselves to direct measurement. However, they do provide a

worthwhile basis for indirect measures and an excellent checklist for assessing the quality of a

system.

TARGETED QUALITY FACTORS

The quality dimensions and factors focus on the software as a whole and can be used as a

generic indication of the quality of an application. A software team can develop a set of

quality characteristics and associated questions that would probe the degree to which each

factor has been satisfied.

For example, McCall identifies usability as an important quality factor. If you were asked to

review a user interface and assess its usability, how would you proceed? You might start with

the sub attributes suggested by McCall—understandability, learnability, and operability—but

what do these mean in a pragmatic sense? To conduct your assessment, you‘ll need to address

specific, measurable (or at least, recognizable) attributes of the interface as given below:

Intuitiveness. The degree to which the interface follows expected usage patterns so that even

a novice can use it without significant training.

 Is the interface layout conducive to easy understanding?

 Are interface operations easy to locate and initiate?

 Does the interface use a recognizable metaphor?

 Is input specified to economize key strokes or mouse clicks?

 Does the interface follow the three golden rules?

 Do aesthetics aid in understanding and usage?

Efficiency. The degree to which operations and information can be located or initiated.

 Does the interface layout and style allow a user to locate operations and information

efficiently?

 Can a sequence of operations (or data input) be performed with an economy of

motion?

 Are output data or content presented so that it is understood immediately?

 Have hierarchical operations been organized in a way that minimizes the depth to

which a user must navigate to get something done?

73

Robustness. The degree to which the software handles bad input data or inappropriate user

interaction.

 Will the software recognize the error if data at or just outside prescribed boundaries is

input? More importantly, will the software continue to operate without failure or

degradation?

 Will the interface recognize common cognitive or manipulative mistakes and

explicitly guide the user back on the right track?

 Does the interface provide useful diagnosis and guidance when an error condition

(associated with software functionality) is uncovered?

Richness. The degree to which the interface provides a rich feature set.

 Can the interface be customized to the specific needs of a user?

 Does the interface provide a macro capability that enables a user to identify a

sequence of common operations with a single action or command?

4.2.2 ACHIEVING SOFTWARE QUALITY

Software quality doesn‘t just appear. It is the result of good project management and solid

software engineering practice. Management and practice are applied within the context of

four broad activities that help a software team achieve high software quality: software

engineering methods, project management techniques, quality control actions, and software

quality assurance.

SOFTWARE ENGINEERING METHODS

If you expect to build high-quality software, you must understand the problem to be solved.

You must also be capable of creating a design that conforms to the problem while at the same

time exhibiting characteristics that lead to software that exhibits the quality dimensions and

factors.

PROJECT MANAGEMENT TECHNIQUES

The impact of poor management decisions on software quality is as follows: if (1) a project

manager uses estimation to verify that delivery dates are achievable, (2) schedule

dependencies are understood and the team resists the temptation to use short cuts, (3) risk

planning is conducted so problems do not breed chaos, software quality will be affected in a

74

positive way. In addition, the project plan should include explicit techniques for quality and

change management.

QUALITY CONTROL

Quality control encompasses a set of software engineering actions that help to ensure that

each work product meets its quality goals. Models are reviewed to ensure that they are

complete and consistent. Code may be inspected in order to uncover and correct errors before

testing commences. A series of testing steps is applied to uncover errors in processing logic,

data manipulation, and interface communication. A combination of measurement and

feedback allows a software team to tune the process when any of these work products fail to

meet quality goals.

QUALITY ASSURANCE

Quality assurance establishes the infrastructure that supports solid software engineering

methods, rational project management, and quality control actions—all pivotal if you intend

to build high-quality software. In addition, quality assurance consists of a set of auditing and

reporting functions that assess the effectiveness and completeness of quality control actions.

The goal of quality assurance is to provide management and technical staff with the data

necessary to be informed about product quality, thereby gaining insight and confidence that

actions to achieve product quality are working. Of course, if the data provided through

quality assurance identifies problems, it is management‘s responsibility to address the

problems and apply the necessary resources to resolve quality issues.

4.3 REVIEW TECHNIQUES

Software reviews are a ―filter‖ for the software process. That is, reviews are applied at

various points during software engineering and serve to uncover errors and defects that can

then be removed. Software reviews ―purify‖ software engineering work products, including

requirements and design models, code, and testing data.

4.3.1 COST IMPACT OF SOFTWARE DEFECTS

Within the context of the software process, the terms defect and fault are synonymous. Both

imply a quality problem that is discovered after the software has been released to end users

(or to another framework activity in the software process). The term error depicts a quality

75

problem that is discovered by software engineers (or others) before the software is released to

the end user (or to another framework activity in the software process).

The primary objective of technical reviews is to find errors during the process so that they do

not become defects after release of the software. The obvious benefit of technical reviews is

the early discovery of errors so that they do not propagate to the next step in the software

process. A number of industry studies indicate that design activities introduce between 50 and

65 percent of all errors (and ultimately, all defects) during the software process. However,

review techniques have been shown to be up to 75 percent effective in uncovering design

flaws. By detecting and removing a large percentage of these errors, the review process

substantially reduces the cost of subsequent activities in the software process.

4.3.2 REVIEW METRICS AND THEIR USE

Technical reviews are one of many actions that are required as part of good software

engineering practice. Each action requires dedicated human effort, Since available project

effort is finite, it is important for a software engineering organization to understand the

effectiveness of each action by defining a set of metrics that can be used to assess their

efficacy.

Although many metrics can be defined for technical reviews, a relatively small subset can

provide useful insight. The following review metrics can be collected for each review that is

conducted:

Preparation effort, Ep—the effort (in person-hours) required to review a work product prior

to the actual review meeting

Assessment effort, Ea—the effort (in person-hours) that is expended during the actual review

Rework effort, Er—the effort (in person-hours) that is dedicated to the correction of those

errors uncovered during the review

Work product size, WPS—a measure of the size of the work product that has been reviewed

(e.g., the number of UML models, or the number of document pages, or the number of lines

of code)

Minor errors found, Err minor—the number of errors found that can be categorized as minor

(requiring less than some prespecified effort to correct)

76

Major errors found, Errmajor—the number of errors found that can be categorized as major

(requiring more than some prespecified effort to correct)

These metrics can be further refined by associating the type of work product that was

reviewed for the metrics collected.

4.3.3 ANALYZING METRICS

Before analysis can begin, a few simple computations must occur. The total review effort and

the total number of errors discovered are defined as:

Ereview = Ep + Ea + Er

Errtot = Errminor + Errmajor

Error density represents the errors found per unit of work product reviewed.

Error density = Errtot / WPS

For example, if a requirements model is reviewed to uncover errors, inconsistencies, and

omissions, it would be possible to compute the error density in a number of different ways.

The requirements model contains 18 UML diagrams as part of 32 overall pages of descriptive

materials. The review uncovers 18 minor errors and 4 major errors. Therefore, Errtot 22.

Error density is 1.2 errors per UML diagram or 0.68 errors per requirements model page.

If reviews are conducted for a number of different types of work products (e.g., requirements

model, design model, code, test cases), the percentage of errors uncovered for each review

can be computed against the total number of errors found for all reviews. In addition, the

error density for each work product can be computed.

Once data are collected for many reviews conducted across many projects, average values for

error density enable you to estimate the number of errors to be found in a new (as yet

unreviewed document). For example, if the average error density for a requirements model is

0.6 errors per page, and a new requirement model is 32 pages long, a rough estimate suggests

that your software team will find about 19 or 20 errors during the review of the document. If

you find only 6 errors, you‘ve done an extremely good job in developing the requirements

model or your review approach was not thorough enough.

77

4.3.4 INFORMAL REVIEWS

Informal reviews include a simple desk check of a software engineering work product with a

colleague, a casual meeting (involving more than two people) for the purpose of reviewing a

work product, or the review-oriented aspects of pair programming.

A simple desk check or a casual meeting conducted with a colleague is a review. However,

because there is no advance planning or preparation, no agenda or meeting structure, and no

follow-up on the errors that are uncovered, the effectiveness of such reviews is considerably

lower than more formal approaches. But a simple desk check can and does uncover errors

that might otherwise propagate further into the software process

Pair programming can be characterized as a continuous desk check. Rather than scheduling a

review at some point in time, pair programming encourages continuous review as a work

product (design or code) is created. The benefit is immediate discovery of errors and better

work product quality as a consequence.

4.3.5 FORMAL TECHNICAL REVIEWS

A formal technical review (FTR) is a software quality control activity performed by software

engineers (and others).

The objectives of an FTR are:

 To uncover errors in function, logic, or implementation for any representation of the

software;

 To verify that the software under review meets its requirements; (

 To ensure that the software has been represented according to predefined standards;

 To achieve software that is developed in a uniform manner; and

 To make projects more manageable. In addition, the FTR serves as a training ground,

enabling junior engineers to observe different approaches to software analysis, design,

and implementation.

The FTR also serves to promote backup and continuity because a number of people become

familiar with parts of the software that they may not have otherwise seen. The FTR is

actually a class of reviews that includes walkthroughs and inspections. Each FTR is

conducted as a meeting and will be successful only if it is properly planned, controlled, and

attended. In the sections that follow, guidelines similar to those for a walkthrough are

presented as a representative formal technical review.

78

THE REVIEW MEETING

Regardless of the FTR format that is chosen, every review meeting should abide by the

following constraints:

 Between three and five people (typically) should be involved in the review.

 Advance preparation should occur but should require no more than two hours of

work for each person.

 The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and small)

part of the overall software. For example, rather than attempting to review an entire design,

walkthroughs are conducted for each component or small group of components. By

narrowing the focus, the FTR has a higher likelihood of uncovering errors.

The review meeting is attended by the review leader, all reviewers, and the producer. One of

the reviewers takes on the role of a recorder, that is, the individual who records (in writing)

all important issues raised during the review. The FTR begins with an introduction of the

agenda and a brief introduction by the producer. The producer then proceeds to ―walk

through‖ the work product, explaining the material, while reviewers raise issues based on

their advance preparation. When valid problems or errors are discovered, the recorder notes

each.

At the end of the review, all attendees of the FTR must decide whether to:

(1) accept the product without further modification,

(2) reject the product due to severe errors (once corrected, another review must be

performed), or

(3) accept the product provisionally (minor errors have been encountered and must be

corrected, but no additional review will be required).

After the decision is made, all FTR attendees complete a sign-off, indicating their

participation in the review and their concurrence with the review team‘s findings.

REVIEW REPORTING AND RECORD KEEPING

During the FTR, a reviewer (the recorder) actively records all issues that have been raised.

These are summarized at the end of the review meeting, and a review issues list is produced.

In addition, a formal technical review summary report is completed.

79

A review summary report answers three questions:

1. What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

The review summary report is a single page form (with possible attachments). It becomes

part of the project historical record and may be distributed to the project leader and other

interested parties.

The review issues list serves two purposes:

(1) To identify problem areas within the product and

(2) To serve as an action item checklist that guides the producer as corrections are made. An

issues list is normally attached to the summary report that should be ensured with follow up

procedure.

REVIEW GUIDELINES

Guidelines for conducting formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is uncontrolled

can often be worse than no review at all.

 The following represents a minimum set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Conducted

properly, the FTR should leave all participants with a warm feeling of accomplishment.

Conducted improperly, the FTR can take on the aura of an inquisition. Errors should be

pointed out gently; the tone of the meeting should be loose and constructive; the intent

should not be to embarrass or belittle. The review leader should conduct the review

meeting to ensure that the proper tone and attitude are maintained and should

immediately halt a review that has gotten out of control.

2. Set an agenda and maintain it. One of the key maladies of meetings of all types is drift.

An FTR must be kept on track and on schedule. The review leader is chartered with the

responsibility for maintaining the meeting schedule and should not be afraid to nudge

people when drift sets in.

80

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be

universal agreement on its impact. Rather than spending time debating the question, the

issue should be recorded for further discussion off-line.

4. Enunciate problem areas, but don‘t attempt to solve every problem noted. A review is not

a problem-solving session. The solution of a problem can often be accomplished by the

producer alone or with the help of only one other individual. Problem solving should be

postponed until after the review meeting.

5. Take written notes. It is sometimes a good idea for the recorder to make notes on a wall

board, so that wording and priorities can be assessed by other reviewers as information is

recorded. Alternatively, notes may be entered directly into a notebook computer.

6. Limit the number of participants and insist upon advance preparation. Two heads are

better than one, but 14 are not necessarily better than 4. Keep the number of people

involved to the necessary minimum. However, all review team members must prepare in

advance. Written comments should be solicited by the review leader (providing an

indication that the reviewer has reviewed the material).

7. Develop a checklist for each product that is likely to be reviewed. A checklist helps the

review leader to structure the FTR meeting and helps each reviewer to focus on important

issues. Checklists should be developed for analysis, design, code, and even testing work

products.

8. Allocate resources and schedule time for FTRs. For reviews to be effective, they should

be scheduled as tasks during the software process. In addition, time should be scheduled

for the inevitable modifications that will occur as the result of an FTR.

9. Conduct meaningful training for all reviewers. To be effective all review participants

should receive some formal training. The training should stress both process-related

issues and the human psychological side of reviews. Freedman and Weinberg [Fre90]

estimate a one-month learning curve for every 20 people who are to participate

effectively in reviews.

10. Review your early reviews. Debriefing can be beneficial in uncovering problems with the

review process itself. The very first product to be reviewed should be the review

guidelines themselves.

81

Because many variables (e.g., number of participants, type of work products, timing and

length, specific review approach) have an impact on a successful review, a software

organization should experiment to determine what approach works best in a local context.

4.4 SOFTWARE QUALITY ASSURANCE - SQA

Software quality assurance (SQA) encompasses

(1) An SQA process,

(2) Specific quality assurance and quality control tasks (including technical reviews and a

multitiered testing strategy),

(3) Effective software engineering practice (methods and tools),

(4) Control of all software work products and the changes made to them,

(5) A procedure to ensure compliance with software development standards (when

applicable), and

(6) Measurement and reporting mechanisms.

4.4.1 ELEMENTS OF SQA

Software quality assurance encompasses a broad range of concerns and activities that focus

on the management of software quality.

Standards. The IEEE, ISO, and other standards organizations have produced a broad array of

software engineering standards and related documents. Standards may be adopted voluntarily

by a software engineering organization or imposed by the customer or other stakeholders.

The job of SQA is to ensure that standards that have been adopted are followed and that all

work products conform to them.

Reviews and audits. Technical reviews are a quality control activity performed by software

engineers for software engineers. Their intent is to uncover errors. Audits are a type of review

performed by SQA personnel with the intent of ensuring that quality guidelines are being

followed for software engineering work. For example, an audit of the review process might

be conducted to ensure that reviews are being performed in a manner that will lead to the

highest likelihood of uncovering errors.

Testing. Software testing is a quality control function that has one primary goal—to find

errors. The job of SQA is to ensure that testing is properly planned and efficiently conducted

so that it has the highest likelihood of achieving its primary goal.

82

Error/defect collection and analysis. The only way to improve is to measure how you‘re

doing. SQA collects and analyzes error and defect data to better understand how errors are

introduced and what software engineering activities are best suited to eliminating them.

Change management. Change is one of the most disruptive aspects of any software project.

If it is not properly managed, change can lead to confusion, and confusion almost always

leads to poor quality. SQA ensures that adequate change management practices have been

instituted.

Education. Every software organization wants to improve its software engineering practices.

A key contributor to improvement is education of software engineers, their managers, and

other stakeholders. The SQA organization takes the lead in software process improvement

and is a key proponent and sponsor of educational programs.

Vendor management. Three categories of software are acquired from external software

vendors—shrink-wrapped packages (e.g., Microsoft Office), a tailored shell that provides a

basic skeletal structure that is custom tailored to the needs of a purchaser, and contracted

software that is custom designed and constructed from specifications provided by the

customer organization. The job of the SQA organization is to ensure that high-quality

software results by suggesting specific quality practices that the vendor should follow (when

possible), and incorporating quality mandates as part of any contract with an external vendor.

Security management. With the increase in cyber crime and new government regulations

regarding privacy, every software organization should institute policies that protect data at all

levels, establish firewall protection for WebApps, and ensure that software has not been

tampered with internally. SQA ensures that appropriate process and technology are used to

achieve software security

Safety. Because software is almost always a pivotal component of human rated systems (e.g.,

automotive or aircraft applications), the impact of hidden defects can be catastrophic. SQA

may be responsible for assessing the impact of software failure and for initiating those steps

required to reduce risk.

Risk management. Although the analysis and mitigation of risk is the concern of software

engineers, the SQA organization ensures that risk management activities are properly

conducted and that risk-related contingency plans have been established.

83

In addition to each of these concerns and activities, SQA works to ensure that software

support activities (e.g., maintenance, help lines, documentation, and manuals) are conducted

or produced with quality as a dominant concern.

4.5 CHECK YOUR PROGRESS

1. What is software quality?

2. What are the methods to achieve software quality?

3. What is SQA?

4. What are the different review techniques followed to maintain software quality?

Answers to check your progress:

1. The quality of software can be defined as the ability of the software to function as per

user requirement. When it comes to software products it must satisfy all the

functionalities written down in the SRS document.

2. Software Engineering Methods, Project Management Techniques, Quality Control,

Quality Assurance.

3. Software quality assurance (SQA) encompasses

(1) an SQA process,

(2) specific quality assurance and quality control tasks (including technical reviews

and a multitiered testing strategy),

(3) effective software engineering practice (methods and tools),

(4) control of all software work products and the changes made to them,

(5) a procedure to ensure compliance with software development standards (when

applicable), and

(6) Measurement and reporting mechanisms.

4. The different review techniques are:

(1) Cost Impact of Software Defects

(2) Review Metrics and their Use

(3) Analyzing Metrics

(4) Informal Reviews

(5) Formal Technical Reviews

(6) The Review Meeting

(7) Review Reporting and Record Keeping

84

4.6 SUMMARY

A wide variety of software quality dimensions and factors have been proposed over

the years. All try to define a set of characteristics that, if achieved, will lead to high software

quality. McCall‘s and the ISO 9126 quality factors establish characteristics such as reliability,

usability, maintainability, functionality, and portability as indicators that quality exists.

The intent of every technical review is to find errors and uncover issues that would have a

negative impact on the software to be deployed. The sooner an error is uncovered and

corrected, the less likely that error will propagate to other software engineering work

products and amplify itself, resulting in significantly more effort to correct it.

4.7 KEYWORDS

 Testing: It is a quality control function that has one primary goal to find errors.

 Technical reviews: This is a quality control activity performed by software engineers for

software engineers.

 Quality control: It encompasses a set of software engineering actions that help to ensure

that each work product meets its quality goals.

 Durability: It means the ability of the software to work without any issue for a long

period of time.

4.8 QUESTIONS FOR SELF STUDY

1. What are the key aspects that conclude software quality?

2. What are the targeted software quality factors?

3. Discuss any two major techniques to achieve software quality.

4. Explain any 4 review techniques.

5. Write a note on SQA elements.

4.9 REFERENCES

1. https://ocw.ui.ac.id/pluginfile.php/13396/mod_resource/content/2/Schwalbe%208th%20-

%20Chapter%2002.pdf

2. https://www.tpptechnology.com/

3. https://mymanagementguide.com/

Karnataka State Open University

Mukthagangothri, Mysore – 570 006.

Dept. of Studies and Research in Management

MBA IT Specialization

IV Semester

MBSC-4.1G Software Project Management

Block 2

PREFACE

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engineering

problem solving. It is a key factor that differentiates modern products and services. It is

embedded in systems of all kinds: transportation, medical, telecommunications, military,

industrial processes, entertainment, office products, . . . the list is almost endless. Software is

virtually inescapable in a modern world. And as we move into the twenty-first century, it will

become the driver for new advances in everything from elementary education to genetic

engineering.

When a computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify and even

easier to use—it can and does change things for the better. But when software fails—when its

users are dissatisfied, when it is error prone, when it is difficult to change and even harder to

use—bad things can and do happen. We all want to build software that makes things better,

avoiding the bad things that lurk in the shadow of failed efforts. To succeed, we need

discipline when software is designed and built. We need an engineering approach.

The whole material is organized into four modules each with four units. Each unit

lists the objectives of the study along with the relevant questions, illustrations and suggested

reading to better understand the concepts.

Wish you happy reading!!!

KARNATAKA STATE OPEN UNIVERSITY

MUKTHAGANGOTRI, MYSURU-06

Dept. of Studies and Research in Management

MBA IT

IV SEMESTER

MBSC-4.1G : SOFTWARE PROJECT MANAGEMENT (4 Credits)

BLOCK 2: Project Scheduling and Management

UNIT-5: PROJECT SCHEDULING 1-15

UNIT-6: RISK MANAGEMENT 16-28

UNIT-7: MAINTENANCE AND RE-ENGINEERING 29-46

UNIT-8: PROJECT PROCUREMENT MANAGEMENT 47-60

BLOCK 2 INTRODUCTION

Software Project Management consists of many activities, that includes planning of

the project, deciding the scope of product, estimation of cost in different terms, scheduling of

tasks, etc.

Software project management involves many activities, including project planning, software

product scope, cost estimation in various terms, scheduling of tasks and events, and resource

management. Project management activities may include:

Project Planning

Scope Management

Project Estimation

This block consists of four units and is organized as follows:

UNIT 5 speaks about the scheduling techniques to be allowed and applied in project

management to reach the expected deliverable time as instructed by the client. There are

several methodologies that can be applied while allotting the different time frames to

different sources making sure of no waste of time and productive utilization.

UNIT 6 focuses on Risk Management to make sure there is no any gap in realizing the

requirements and reaching the deadlines failing which might result in rework of project or

rejection.

UNIT 7 says about the importance of maintenance and reengineering. Every software needs

to undergo Updation on a regular basis even after the delivery.

UNIT 8 is about creation and maintenance of relationship with external resources to

complete the project. It focuses on required functionality to manage or complete project

procurement for any size or type of the project.

1

STRUCTURE

5.0 Objectives

5.1 Introduction

5.2 Project Scheduling – Basic Concepts and Principles

5.2.1 Benefits of Project Scheduling

5.2.2 An overview of different Scheduling Techniques

5.2.2.1 Critical Path Method (CPM)

5.2.2.2 Crashing

5.2.2.3 Simulation

5.2.2.4 Resource Optimization

5.2.3 Steps to form an ideal project schedule

5.2.3.1 Define the project scope

5.2.3.2 Decide the milestones

5.2.3.3 Illustrate task interdependencies

5.2.3.4 Assess the resource demand and their availability

5.2.3.5 Form a resource plan using the right scheduling technique

5.2.3.6 Build a contingency plan

5.2.3.7 Monitor, review, and update

5.3 Defining the Test Set for a Software Project

5.3.1 A Task Set Example

5.3.2 Refinement of Software Engineering Actions

5.4 Defining a Task Network

5.5 Scheduling

5.6 Earned Value Analysis

5.7 Check your progress

5.8 Summary

5.9 Keywords

5.10 Questions for self-study

5.11 References

UNIT-5: PROJECT SCHEDULING

2

5.0 OBJECTIVES

After studying this unit, you will be able to:

 Describe a work break down structure of project to identify the schedules and

planning.

 Identify task relationships and plan accordingly.

 Estimate work packages and calculate the initial schedule.

 Assign and level resources after completion of this unit.

5.1 INTRODUCTION

 In this unit, we are going to discuss about project scheduling. Project schedule simply

means a mechanism that is used to communicate and know about that tasks are needed and

has to be done or performed and which organizational resources will be given or allocated to

these tasks and in what time duration or time frame work is needed to be performed.

5.2 PROJECT SCHEDULING - BASIC CONCEPTS AND PRINCIPLES

A comprehensive process of designing a project schedule that outlines the project

phases, tasks under each stage, and dependencies is known as project scheduling. It also

considers skills and the number of resources required for each task, their order of occurrence,

milestones, interdependencies, and timeline.

Furthermore, it involves analysing the resource availability and implementing the scheduling

technique to ascertain timely delivery while maintaining the resource health index. Many

project managers successfully generate the right schedule, yet most of them find it

challenging to manage the resources intelligently.

It can cause delays and discrepancies in the deliverables as their talent pool is responsible for

executing these tasks. Thus, they must master each aspect of project scheduling.

5.2.1 BENEFITS OF PROJECT SCHEDULING

1. It brings together all the project-related information in one place that opens doors for

seamless communication between the project manager and stakeholders.

2. Project scheduling also enables task prioritization. The initial steps of project

scheduling comprise forming a work breakdown structure and dividing the project

into simpler tasks. Once the tasks are enlisted, the project manager can implement the

3

appropriate technique to evaluate the criticality of the tasks and arrange them in order

of precedence.

3. In addition, the detailed description of each task and skill demand against them makes

it easy for managers to procure the right resources for the right job. Not just that, with

real-time information of the project‘s progress, they can gauge the resource

performance and take remedial measures in case of any inconsistencies.

4. The internal team conflicts are minimized when the entire team, stakeholders, and

managers are on the same page. Resources are aware of the task dependencies and

work diligently to ensure that the overall delivery is not affected.

5. When managers opt for sophisticated scheduling software, they get real-time updates

on every project metric, which promotes proactive planning, monitoring, and coherent

risk management.

5.2.2 AN OVERVIEW OF DIFFERENT SCHEDULING TECHNIQUES

Project scheduling techniques are beneficial to secure the project timeline and budget without

over or underutilizing the workforce. Your resource pool is the success driver of the project,

and thus, it is vital to keep their productivity and well-being in check. These scheduling

techniques come in handy to ensure that no resource is burned out or sitting idle.

Here‘s a rundown of some of these techniques:

5.2.2.1 Critical Path Method (CPM)

This technique is purely based on mathematical analysis and lets you calculate the longest

and shortest possible project timeline.

Let‘s understand this better with an example. There are four tasks in the project – A, B, C,

and D. Task B and D can only begin after task A completes, whereas task C has no such

restriction.

In this case, since the progress of B and D banks on task A, it becomes the critical task. Task

A will be time-sensitive as any delay in its completion can delay the entire project‘s course.

On the other hand, given that task C has no dependencies; it can be accomplished within a

flexible deadline. Task C, in this case, will have a float time (also referred to as ‗slack‘). A

float-time is where one can prolong a task to a specific limit without impacting the overall

project.

4

This is how a manager can calculate each task‘s start and finish time, keeping in mind the

reliance and coming to a precise conclusion. A CPM technique is applicable to project tasks

when all the deliverables and interdependencies are clear.

5.2.2.2 Crashing

Crashing is a tricky duration-compression technique. It involves adding more resources to

specific tasks to expedite the project‘s delivery.

For instance, you have two developers working on your software development project. Your

project manager will add one more so that he/she works on the remaining designs. However,

this may not always work in your favour as it adds additional responsibilities of collaboration

and communication with other resources.

Another way of using the crashing technique is by adding more duration per day and paying

overtime to the workforce. It can have two repercussions; cost-escalation which can eat up

from your revenue, and two, it can burn out your crew. Thus, crashing can only be applied

when it fits your project budget and when you have generic resources as a backup.

5.2.2.3 Simulation

On the contrary to the critical path method, simulation is used when the project attributes like

deliverables and interdependencies are unclear. Simulation allows you to gauge multiple

scenarios by changing one or two variables.

For example, if one task‘s timeline is known, you can modify the resource utilization and see

how it affects the end date. After trying multiple variations, you can come to the best-fit

scenario.

Project managers commonly use the Monte-Carlo simulation model. The advantage is that

instead of assigning one constant to the unknown variable, managers can play with multiple

values and peruse the results. It facilitates them to come to a best-fit estimation or prediction

and form a definite project plan. It also warns you of the potential risks, which give you

enough leeway to create a backup plan.

5.2.2.4 Resource optimization

Workforce, their skills, and their effort drive the project‘s success. Thus, managers must tap

into the right potential and leverage their talent to the maximum extent. At the same time,

keeping their utilization in check is of utmost importance. If resources are underutilized, it

causes lower productivity and unplanned attrition. Overutilization, on the other hand, can

cause fatigue and burnout.

5

This is why, if the timelines of the booked resources stretch thinly, managers deploy an

appropriate resource optimization technique. Suppose the project is time-sensitive, and the

deadlines cannot be adjusted. In that case, they will book more resources to assist the critical

employee or utilize the slack without interrupting the critical path. This is known as resource

smoothing. If the project‘s timeline is adjustable, managers will initiate the project based on

the resource‘s availability to prevent overutilization. This technique is termed resource-

levelling.

Implementing these two techniques can help managers define the schedules that align with

resources‘ mental and physical well-being.

5.2.3 STEPS TO FORM AN IDEAL PROJECT SCHEDULE

Developing a project schedule framework is a sequential process consisting of several steps.

Based on project requirements or organizational needs, these can be altered. To form a

standardized procedure, here are the seven steps you can leverage and create a standard

project schedule:

5.2.3.1 Define the project scope

Project scope is the foundation of any project. It distinctly clarifies project goals and

objectives, deliverables, features, tasks, budget, and other necessary elements. Project

managers can define the scope using a work breakdown structure that allows a systematic

division of tasks and timelines.

Defining the scope sets the tone for the entire project schedule as it allows you to understand

the minute details before going a step forward.

5.2.3.2 Decide the milestones

Now that the tasks are defined, the next step is to put them in different phases. For instance,

you are managing a construction project. The first phase will be forming a plan that

constitutes various tasks like designing the blueprint, studying the site, etc. Similarly, the

consecutive tasks will be clubbed under relevant phases.

The completion of each phase acts as a checkpoint in the project, known as milestones.

Defining the milestones makes it convenient for project managers to track the project‘s

progress and give a sense of accomplishment to the resources.

6

5.2.3.3 Illustrate task interdependencies

During a project‘s tenure, many tasks take place simultaneously, while some can only kick-

start once the task-in-hand is complete. It is known as interdependence. Taking the same

example, only when the design and conception are done, employees can go and assemble the

construction material.

It will allow managers to gauge the timeline precisely by giving them enough information on

which tasks can be done in parallel and which ones are interdependent. Managers can use the

critical path method technique to form the right roadmap of independent and dependent

project tasks. This will also allow them to deduce accurate task duration.

5.2.3.4 Assess the resource demand and their availability

Once the roadmap is ready, the next and most crucial step is to understand each task

diligently, along with the skillset and number of resources it will require. Managers also need

to consider the duration of each task. Analysing the skill demand lets managers find the best-

fit resource for it and do justice to the project.

This is not it; project managers have to see the availability of every resource to avoid

overbooking or double-booking. If the resource is unavailable, managers will place a formal

request to the resource managers to fulfil the demand in due time.

5.2.3.5 Form a resource plan using the right scheduling technique

Once the resource demand is met, managers can finally formulate a project resource plan. It

is done before scheduling to ensure that resources are not over or underutilized. For example,

you have a critical task that can only be accomplished by highly specialized personnel.

He/she is unavailable during the same time. What would you do?

You can implement the correct resource optimization technique based on the timeline

constraints of the project. This will ensure that the workforces‘ schedule is given due

importance, and they will be at their productive best when they have only one project to focus

on. Even if they are catering to two or more projects, optimizing their schedule will allow

them to have a balanced timeline and negate the chances of schedule overruns. Eventually, it

will prevent employee burnout and enhance employee satisfaction.

5.2.3.6 Build a contingency plan

Risks are an inevitable part of any project, and they can be in any form. Maybe one of your

critical resources takes an unplanned leave, or the project‘s cost escalates due to procurement

7

of equipment at the last minute, or so on. In this case, managers have to keep a backup plan in

place to keep the project going.

For instance, having a backup resource ready (generic resource) will not cause any delay in

the entire project‘s lifecycle. Here, running the simulation technique, also known as ‗what-if

analysis, is an ideal choice. It provides outputs to multiple scenarios, and managers can then

form a contingency or an action plan to deal with potential bottlenecks in advance.

5.2.3.7 Monitor, review, and update

Last but not least, after forming the schedule, assigning the right resource to the right job, and

head-starting the project, it‘s time to monitor and control the progress. Managers can equip an

intuitive project management solution that provides real-time reports on different project

metrics like cost, actual vs. forecasted timeline, etc.

Furthermore, they can pair it with a robust resource management tool to get real-time

resource performance updates alongside the project. These tools will forewarn the managers

in case of discrepancies and proactively take remedial measures. Eventually, it will be easier

for them to safeguard the project from going downhill.

Given the market volatility, the project schedule might change due to ad hoc demands. In this

case, managers will update the plan in real-time to incorporate the changes and keep

everyone informed.

After completing the steps mentioned above, a project schedule is finally ready to give a

jumpstart to the project. Out of all these, resource planning is a cornerstone of successful and

timely project delivery.

5.3 DEFINING A TASK SET FOR THE SOFTWARE PROJECT

A task set is a collection of software engineering work tasks, milestones, work

products, and quality assurance filters that must be accomplished to complete a particular

project. The task set must provide enough discipline to achieve high software quality. But, at

the same time, it must not burden the project team with unnecessary work.

In order to develop a project schedule, a task set must be distributed on the project time line.

The task set will vary depending upon the project type and the degree of rigor with which the

software team decides to do its work. Although it is difficult to develop a comprehensive

taxonomy of software project types, most software organizations encounter the following

projects:

8

1. Concept development projects that are initiated to explore some new business concept or

application of some new technology.

2. New application development projects that are undertaken as a consequence of a specific

customer request.

3. Application enhancement projects that occur when existing software undergoes major

modifications to function, performance, or interfaces that is observable by the end user.

4. Application maintenance projects that correct, adapt, or extend existing software in ways

that may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of rebuilding an existing

(legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.

These include size of the project, number of potential users, mission criticality, application

longevity, and stability of requirements, ease of customer/developer communication, and

maturity of applicable technology, performance constraints, embedded and non-embedded

characteristics, project staff, and reengineering factors.

When taken in combination, these factors provide an indication of the degree of rigor with

which the software process should be applied.

5.3.1 A TASK SET EXAMPLE

Concept development projects are initiated when the potential for some new technology must

be explored. There is no certainty that the technology will be applicable, but a customer (e.g.,

marketing) believes that potential benefit exists. Concept development projects are

approached by applying the following actions:

1. Concept scoping determines the overall scope of the project.

2. Preliminary concept planning establishes the organization‘s ability to undertake the

work implied by the project scope.

3. Technology risk assessment evaluates the risk associated with the technology to be

implemented as part of the project scope.

4. Proof of concept demonstrates the viability of a new technology in the software

context.

5. Concept implementation implements the concept representation in a manner that can

be reviewed by a customer and is used for ―marketing‖ purposes when a concept

must be sold to other customers or management.

9

6. Customer reaction to the concept solicits feedback on a new technology concept and

targets specific customer applications.

A quick scan of these actions should yield few surprises. In fact, the software engineering

flow for concept development projects (and for all other types of projects as well) is little

more than common sense.

5.3.2 REFINEMENT OF SOFTWARE ENGINEERING ACTIONS

Refinement begins by taking each action and decomposing it into a set of tasks (with related

work products and milestones). As an example of task decomposition, consider Action 5.3.1,

Concept Scoping. Task refinement can be accomplished using an outline format, but, here, a

process design language approach is used to illustrate the flow of the concept scoping action:

Task definition: Action 5.3.1 Concept Scoping

 Identify need, benefits and potential customers;

 Define desired output/control and input events that drive the application;

 Begin Task - above task

 TR: Review written description of need7

 Derive a list of customer visible outputs/inputs

 TR: Review outputs/inputs with customer and revise as required;

 endtask

 Define the functionality/behaviour for each major function;

 Begin Task

 TR: Review output and input data objects derived in task 1.2.2;

 Derive a model of functions/behaviours;

 TR: Review functions/behaviours with customer and revise as required;

 endtask

 Isolate those elements of the technology to be implemented in software;

 Research availability of existing software;

 Define technical feasibility;

 Make quick estimate of size;

 Create a scope definition;

 endtask definition: Action 5.3.1

The tasks and subtasks noted in the process design language refinement form the basis for a

detailed schedule for the concept scoping action.

10

5.4 DEFINING A TASK NETWORK

Individual tasks and subtasks have interdependencies based on their sequence. In

addition, when more than one person is involved in a software engineering project, it is likely

that development activities and tasks will be performed in parallel. When this occurs,

concurrent tasks must be coordinated so that they will be complete when later tasks require

their work product(s).

A task network, also called an activity network, is a graphic representation of the task flow

for a project. It is sometimes used as the mechanism through which task sequence and

dependencies are input to an automated project scheduling tool. In its simplest form (used

when creating a macroscopic schedule), the task network depicts major software engineering

tasks.

Figure 5.1 – Task Network

The concurrent nature of software engineering activities leads to a number of important

scheduling requirements. Because parallel tasks occur asynchronously, the planner must

determine inter task dependencies to ensure continuous progress toward completion. In

addition, the project manager should be aware of those tasks that lie on the critical path. That

is, tasks that must be completed on schedule if the project as a whole is to be completed on

schedule.

11

5.5 SCHEDULING

Program evaluation and review technique (PERT) and the critical path method (CPM)

are two project scheduling methods that can be applied to software development. Both

techniques are driven by information already developed in earlier project planning activities:

estimates of effort, a decomposition of the product function, the selection of the appropriate

process model and task set, and decomposition of the tasks that are selected.

5.5.1 Timeline Charts

A project timeline is a visual list of tasks or activities placed in chronological order, which

lets project managers view the entirety of the project plan in one place. A project timeline

typically takes the form of a horizontal bar chart, where each task is given a name and a

corresponding start and end date.

A project timeline provides an in-depth overview of the entire project from start to finish.

You can see when a task starts and when it‘s due and importantly, whether or not it‘s

dependent on another task.

Project timelines give project managers an opportunity to:

 Organize their tasks

 Show when in the project the tasks start

 View task deadlines

 Link dependent tasks

 Break the project into phases

 Identify team members assigned to a task

5.5.2 Tracking the Schedule

If it has been properly developed, the project schedule becomes a road map that defines the

tasks and milestones to be tracked and controlled as the project proceeds.

Tracking can be accomplished in a number of different ways:

 Conducting periodic project status meetings in which each team member reports

progress and problems

 Evaluating the results of all reviews conducted throughout the software engineering

process

 Determining whether formal project milestones have been accomplished by the

scheduled date

12

 Comparing the actual start date to the planned start date for each project task listed in

the resource table

 Meeting informally with practitioners to obtain their subjective assessment of

progress to date and problems on the horizon

 Using earned value analysis to assess progress quantitatively

Figure 5.2 – Example Timeline Chart

5.6 EARNED VALUE ANALYSIS

Earned value is a measure of project progress. It enables you to assess the ―percent of

completeness‖ of a project using quantitative analysis rather than rely on a gut feeling. In

fact, Fleming and Koppleman argue that earned value analysis ―provides accurate and

reliable readings of performance from as early as 15 percent into the project.‖ To determine

the earned value, the following steps are performed:

13

The budgeted cost of work scheduled (BCWS) is determined for each work task represented

in the schedule. During estimation, the work (in person-hours or person-days) of each

software engineering task is planned. Hence, BCWSi is the effort planned for work task

1. To determine progress at a given point along the project schedule, the value of BCWS is

the sum of the BCWSi values for all work tasks that should have been completed by that

point in time on the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at completion

(BAC). Hence, BAC (BCWSk) for all tasks k.

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The value for

BCWP is the sum of the BCWS values for all work tasks that have actually been

completed by a point in time on the project schedule.

Wilkens notes that ―the distinction between the BCWS and the BCWP is that the former

represents the budget of the activities that were planned to be completed and the latter

represents the budget of the activities that actually were completed.‖ Given values for

BCWS, BAC, and BCWP, important progress indicators can be computed:

Schedule performance index, SPI = BCWP/BCWS

Schedule variance, SV BCWP - BCWS

SPI is an indication of the efficiency with which the project is utilizing scheduled resources.

An SPI value close to 1.0 indicates efficient execution of the project schedule. SV is simply

an absolute indication of variance from the planned schedule.

Percent scheduled for completion= BCWS / BAC provides an indication of the percentage of

work that should have been completed by time t.

Percent complete= BCWP / BAC provides a quantitative indication of the percent of

completeness of the project at a given point in time t.

It is also possible to compute the actual cost of work performed (ACWP). The value for

ACWP is the sum of the effort actually expended on work tasks that have been completed by

a point in time on the project schedule. It is then possible to compute

Cost performance index, CPI = BCWP / ACWP

Cost variance, CV = BCWP – ACWP

14

A CPI value close to 1.0 provides a strong indication that the project is within its defined

budget. CV is an absolute indication of cost savings (against planned costs) or shortfall at a

particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling difficulties before

they might otherwise be apparent. This enables you to take corrective action before a project

crisis develops.

5.7 CHECK YOUR PROGRESS

1. What is WBS?

2. Represent Project Scheduling Process with a simple diagram.

3. What are the advantages of Project Scheduling?

4. What is Gantt chart?

Answers to check your progress:

1. A WBS is a hierarchical list of the work activities required to complete a project.

2.

3. There are several advantages provided by project schedule in our project management:

 It simply ensures that everyone remains on same page as far as tasks get completed,

dependencies, and deadlines.

 It helps in identifying issues early and concerns such as lack or unavailability of

resources.

 It also helps to identify relationships and to monitor process.

 It provides effective budget management and risk mitigation.

4. Gantt charts were devised by Henry Gantt (1917). It represents project schedule with

respect to time periods. It is a horizontal bar chart with bars representing activities and

time scheduled for the project activities.

15

5.8 SUMMARY

Project schedule simply means a mechanism that is used to communicate and know

about that tasks are needed and has to be done or performed and which organizational

resources will be given or allocated to these tasks and in what time duration or time frame

work is needed to be performed. Effective project scheduling leads to success of project,

reduced cost, and increased customer satisfaction. Scheduling in project management means

to list out activities, deliverables, and milestones within a project that are delivered. It

contains more notes than your average weekly planner notes. The most common and

important form of project schedule is Gantt chart.

5.9 KEYWORDS

 Critical Path Method (CPM): This technique is purely based on mathematical analysis

and lets you calculate the longest and shortest possible project timeline.

 Crashing: It is a tricky duration-compression technique. It involves adding more

resources to specific tasks to expedite the project‘s delivery.

 Project scope: It is the foundation of any project. It distinctly clarifies project goals and

objectives, deliverables, features, tasks, budget, and other necessary elements.

 Task network: It is a graphic representation of the task flow for a project.

 Earned value: It is a measure of project progress.

5.10 QUESTIONS FOR SELF STUDY

1. Write the purpose and advantages of Project Scheduling.

2. Write a brief overview on different scheduling techniques used in project scheduling with

an example.

3. What are the steps to form an ideal project schedule? Explain each one briefly.

4. Define task set and task network for the software project.

5. Explain earned value analysis in brief.

5.11 REFERENCES

1. https://www.sitesbay.com/software-engineering/se-project-management-activities

2. https://www.saviom.com/blog/what-is-project-scheduling-and-why-is-it-important/

3. https://www.projectmanager.com/guides/project-timeline

16

STRUCTURE

6.0 Objectives

6.1 Introduction

6.2 Introduction to Risk Management

6.3 Reactive Vs Proactive Risk Strategies

6.3.1 Reactive Risk Management

6.3.2 Helping to Withstand Future Risks

6.3.3 Proactive Risk Management

6.3.4 Allows for More Control Over Risk Management

6.3.5 Predictive Risk Management

6.4 Software Risks

6.5 Risk Identification

6.5.1 Assessing Overall Project Risk

6.6 Risk Projection

6.7 Risk Mitigation, Monitoring and Management

6.8 Check your progress

6.9 Summary

6.10 Keywords

6.11 Questions for self-study

6.12 References

6.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the importance of Risk management in Project Management and identify

the areas that need Risk management to be performed.

 To identify the Risks across the phases of software development, make mitigation plan

for them and manage the same.

 To consider the size of the risk and compare it with the cost of controlling it.

 To identify and manage risks so that there will be less of negative impact on the

project in terms of objective attainment.

UNIT-6: RISK MANAGEMENT

17

6.1 INTRODUCTION

 In this unit, we are going to discuss about risk management. Risk management is the

process of minimizing any potential problems that may negatively impact a project's

timetable. 'Risk' is any unexpected event that might affect the people, processes, technology,

and resources involved in a project. Unlike 'issues', which are certain to happen, risks are

events that could occur, and you may not be able to tell when. Because of this uncertainty,

project risk requires preparation in order to manage them efficiently.

6.2 INTRODUCTION TO RISK MANAGEMENT

Project risk management is the process of identifying, analyzing and responding to

any risk that arises over the life cycle of a project to help the project remain on track and

meet its goal. Risk management isn‘t reactive only; it should be part of the planning process

to figure out the risk that might happen in the project and how to control that risk if it in fact

occurs.

A risk is anything that could potentially impact your project‘s timeline, performance or

budget. Risks are potentialities, and in a project management context, if they become

realities, they then become classified as ―issues‖ that must be addressed with a risk response

plan. So risk management, then, is the process of identifying, categorizing, prioritizing and

planning for risks before they become issues.

Risk management can mean different things on different types of projects. On large-scale

projects, risk management strategies might include extensive detailed planning for each risk

to ensure mitigation strategies are in place if issues arise. For smaller projects, risk

management might mean a simple, prioritized list of high, medium and low priority risks.

6.3 REACTIVE VS PROACTIVE RISK STRATEGIES

Reactive risk management tries to reduce the damage of potential threats and speed an

organization‘s recovery from them, but assumes that those threats will happen eventually.

Proactive risk management identifies threats and aims to prevent those events from ever

happening in the first place.

Each strategy has its own activities, metrics, and behaviours that are useful in risk analysis.

18

6.3.1 REACTIVE RISK MANAGEMENT

One fundamental point about reactive risk management is that the disaster or threat must

occur before management responds. Proactive risk management is all about taking

preventative measures before the event to decrease its severity, and that‘s a good thing to do.

At the same time, however, organizations should develop reactive risk management plans that

can be deployed after the event. Otherwise management is making decisions about how to

respond as the event happens, which can be a costly and stressful ordeal.

There‘s an obvious catch with reactive risk management. Although this approach gives you

time to understand the risk before acting, you‘re still always one step behind the unfolding

threat. Other projects will lag as you attend to the problem at hand.

6.3.2 HELPING TO WITHSTAND FUTURE RISKS

The reactive approach learns from past or current events and prepares for future events. For

example, businesses can purchase ―cybersecurity insurance‖ to cover the costs of a security

disruption.

This strategy assumes that a breach will happen at some point. Once that breach does occur,

the business might understand more about how to avoid future breaches, and perhaps could

even tailor its insurance policies accordingly.

Fundamentally, however, the organization reacts after the threat has occurred and alters its

measures to prevent future potential risks.

6.3.3 PROACTIVE RISK MANAGEMENT

As the name suggests, proactive risk management means that you identify risks before they

happen and figure out ways to avoid or alleviate the risk. It seeks to reduce the hazard‘s risk

potential or, even better, prevent the threat altogether.

A good example here is vulnerability testing and remediation. Any organization of

appreciable size is likely to have vulnerabilities in its software, which attackers could find an

exploit. So regular testing (or, even better, continuous testing) can help to repair those

vulnerabilities and eliminate that particular threat.

6.3.4 ALLOWS FOR MORE CONTROL OVER RISK MANAGEMENT

Proactive management strategy gives you more control over your risk management generally.

You can decide which issues should be top priorities, and what potential damage you‘re

willing to accept.

19

Proactive management also involves constant monitoring of your systems, risk processes,

cybersecurity, competition, business trends, and so forth. By understanding the level of risk

prior to an event, you can educate and instruct your employees on how to mitigate them.

A truly proactive approach, however, does imply that each risk is constantly monitored. It

also entails regular risk reviews to update the current risk and new risks affecting the

company. This approach drives management to be always aware of the direction of those

risks.

6.3.5 PREDICTIVE RISK MANAGEMENT

Where does predictive risk management fit in all this? As the name suggests, it‘s all about

predicting future risks, outcomes, and threats. Some predictive components may sound

similar to proactive or reactive strategies.

Predictive risk management attempts to:

 Identify probability of risk in a situation, based on one or more variables

 Anticipate potential future risks and their probability

 Anticipate necessary risk controls

6.4 SOFTWARE RISKS

Although there has been considerable debate about the proper definition for software

risk, there is general agreement that risk always involves two characteristics: uncertainty—

the risk may or may not happen; that is, there are no 100 percent probable risks—and loss—if

the risk becomes a reality, unwanted consequences or losses will occur. When risks are

analyzed, it is important to quantify the level of uncertainty and the degree of loss associated

with each risk. To accomplish this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that the

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, stakeholder, and

requirements problems and their impact on a software project. Project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a

technical risk becomes a reality, implementation may become difficult or impossible.

Technical risks identify potential design, implementation, interface, verification, and

20

maintenance problems. In addition, specification ambiguity, technical uncertainty, technical

obsolescence, and ―leading-edge‖ technology are also risk factors. Technical risks occur

because the problem is harder to solve than you thought it would be.

Business risks threaten the viability of the software to be built and often jeopardize the

project or the product. Candidates for the top five business risks are (1) building an excellent

product or system that no one really wants (market risk), (2) building a product that no longer

fits into the overall business strategy for the company (strategic risk), (3) building a product

that the sales force doesn‘t understand how to sell (sales risk), (4) losing the support of senior

management due to a change in focus or a change in people (management risk), and (5)

losing budgetary or personnel commitment (budget risks).

It is extremely important to note that simple risk categorization won‘t always work. Some

risks are simply unpredictable in advance.

6.5 RISK IDENTIFICATION

Risk identification is a systematic attempt to specify threats to the project plan

(estimates, schedule, resource loading, etc.). By identifying known and predictable risks, the

project manager takes a first step toward avoiding them when possible and controlling them

when necessary.

There are two distinct types of risks called generic risks and product-specific risks. Generic

risks are a potential threat to every software project. Product-specific risks can be identified

only by those with a clear understanding of the technology, the people, and the environment

that is specific to the software that is to be built. To identify product-specific risks, the project

plan and the software statement of scope are examined, and an answer to the following

question is developed: ―What special characteristics of this product may threaten our project

plan?‖

One method for identifying risks is to create a risk item checklist. The checklist can be used

for risk identification and focuses on some subset of known and predictable risks in the

following generic subcategories:

 Product size—risks associated with the overall size of the software to be built or

modified.

 Business impact—risks associated with constraints imposed by management or the

marketplace

21

 Stakeholder characteristics—risks associated with the sophistication of the

stakeholders and the developer‘s ability to communicate with stakeholders in a

timely manner.

 Process definition—risks associated with the degree to which the software process

has been defined and is followed by the development organization.

 Development environment—risks associated with the availability and quality of the

tools to be used to build the product.

 Technology to be built—risks associated with the complexity of the system to be

built and the ―newness‖ of the technology that is packaged by the system.

 Staff size and experience—risks associated with the overall technical and project

experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the

topics can be answered for each software project. The answers to these questions allow you to

estimate the impact of risk. A different risk item checklist format simply lists characteristics

that are relevant to each generic subcategory. Finally, a set of ―risk components and drivers‖

are listed along with their probability of occurrence.

A number of comprehensive checklists for software project risk are available on the Web.

You can use these checklists to gain insight into generic risks for software projects.

6.5.1 ASSESSING OVERALL PROJECT RISK

The following questions have been derived from risk data obtained by surveying experienced

software project managers in different parts of the world. The questions are ordered by their

relative importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end users enthusiastically committed to the project and the system/ product to be

built? 3. Are requirements fully understood by the software engineering team and its

customers?

3. Have customers been involved fully in the definition of requirements?

4. Do end users have realistic expectations?

5. Is the project scope stable?

6. Does the software engineering team have the right mix of skills?

7. Are project requirements stable?

8. Does the project team have experience with the technology to be implemented?

22

9. Is the software project we're working on at serious risk?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

If any one of these questions is answered negatively, mitigation, monitoring, and

management steps should be instituted without fail. The degree to which the project is at risk

is directly proportional to the number of negative responses to these questions.

6.5.2 RISK COMPONENTS AND DRIVERS

Risk components are defined in the following manner:

 Performance risk—the degree of uncertainty that the product will meet its

requirements and be fit for its intended use.

 Cost risk—the degree of uncertainty that the project budget will be maintained.

 Support risk—the degree of uncertainty that the resultant software will be easy to

correct, adapt, and enhance.

 Schedule risk—the degree of uncertainty that the project schedule will be maintained

and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories—negligible, marginal, critical, or catastrophic. Referring to Figure 6.1, a

characterization of the potential consequences of errors (rows labeled 1) or a failure to

achieve a desired outcome (rows labeled 2) are described. The impact category is chosen

based on the characterization that best fits the description in the table.

6.6 RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—

(1) the likelihood or probability that the risk is real and

(2) The consequences of the problems associated with the risk, should it occur.

You work along with other managers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no

misunderstandings.

23

Figure 6.1 – Impact Assessment

Note: (1) The potential consequence of undetected software errors or faults. (2) The potential

consequence if the desired outcome is not achieved.

The intent of these steps is to consider risks in a manner that leads to prioritization. No

software team has the resources to address every possible risk with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the most impact.

24

6.7 RISK MITIGATION, MONITORING AND MANAGEMENT

All of the risk analysis activities presented to this point have a single goal—to assist

the project team in developing a strategy for dealing with risk. An effective strategy must

consider three issues: risk avoidance, risk monitoring, and risk management and contingency

planning.

If a software team adopts a proactive approach to risk, avoidance is always the best strategy.

This is achieved by developing a plan for risk mitigation. For example, assume that high staff

turnover is noted as a project risk r1. Based on past history and management intuition, the

likelihood l1 of high turnover is estimated to be 0.70 (70 percent, rather high) and the impact

x1 is projected as critical. That is, high turnover will have a critical impact on project cost

and schedule.

To mitigate this risk, you would develop a strategy for reducing turnover. Among the

possible steps to be taken are:

Meet with current staff to determine causes for turnover (e.g., poor working conditions, low

pay, competitive job market).

 Mitigate those causes that are under your control before the project starts.

 Once the project commences, assume turnover will occur and develop techniques to

ensure continuity when people leave.

 Organize project teams so that information about each development activity is widely

dispersed.

 Define work product standards and establish mechanisms to be sure that all models

and documents are developed in a timely manner.

 Conduct peer reviews of all work (so that more than one person is ―up to speed‖).

 Assign a backup staff member for every critical technologist

As the project proceeds, risk-monitoring activities commence. The project manager monitors

factors that may provide an indication of whether the risk is becoming more or less likely. In

the case of high staff turnover, the general attitude of team members based on project

pressures, the degree to which the team has jelled, interpersonal relationships among team

members, potential problems with compensation and benefits, and the availability of jobs

within the company and outside it are all monitored.

25

In addition to monitoring these factors, a project manager should monitor the effectiveness of

risk mitigation steps. For example, a risk mitigation step noted here called for the definition

of work product standards and mechanisms to be sure that work products are developed in a

timely manner. This is one mechanism for ensuring continuity, should a critical individual

leave the project. The project manager should monitor work products carefully to ensure that

each can stand on its own and that each imparts information that would be necessary if a

newcomer were forced to join the software team somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation efforts have failed and

that the risk has become a reality. Continuing the example, the project is well under way and

a number of people announce that they will be leaving. If the mitigation strategy has been

followed, backup is available, information is documented, and knowledge has been dispersed

across the team. In addition, you can temporarily refocus resources (and readjust the project

schedule) to those functions that are fully staffed, enabling newcomers who must be added to

the team to ―get up to speed.‖ Those individuals who are leaving are asked to stop all work

and spend their last weeks in ―knowledge transfer mode.‖ This might include video-based

knowledge capture, the development of ―commentary documents or Wikis,‖ and/or meeting

with other team members who will remain on the project.

It is important to note that risk mitigation, monitoring, and management (RMMM) steps incur

additional project cost. For example, spending the time to back up every critical technologist

costs money. Part of risk management, therefore, is to evaluate when the benefits accrued by

the RMMM steps are outweighed by the costs associated with implementing them. In

essence, you perform a classic cost-benefit analysis. If risk aversion steps for high turnover

will increase both project cost and duration by an estimated 15 percent, but the predominant

cost factor is ―backup,‖ management may decide not to implement this step. On the other

hand, if the risk aversion steps are projected to increase costs by 5 percent and duration by

only 3 percent, management will likely put all into place.

Risk is not limited to the software project itself. Risks can occur after the software has been

successfully developed and delivered to the customer. These risks are typically associated

with the consequences of software failure in the field.

Software safety and hazard analysis are software quality assurance activities that focus on

the identification and assessment of potential hazards that may affect software negatively and

cause an entire system to fail. If hazards can be identified early in the software engineering

26

process, software design features can be specified that will either eliminate or control

potential hazards.

6.8 CHECK YOUR PROGRESS

1. Briefly Explain the Roles of a Risk Manager.

2. How to perform Risk Identification?

3. Briefly explain the Process of Risk Management.

4. What is Software safety and hazard analysis?

Answers to check your progress:

1. ―Risk Managers identify and evaluate the risks that are likely to be faced by an

organization. They come up with ways to control or mitigate risks and liabilities. A risk

manager offers practical risk models involving credit, operational, and market risk,

guaranteeing operation control. Risk managers also evaluate existing risk handling

measures to identify gaps. They develop risk management plans to assess, mitigate, and

recover from risks effectively.‖

2. ―Risk identification is a preliminary step in risk management that involves

communicating and documenting concerns. Risk identification begins with understanding

business objectives. A risk manager must identify undesirable outcomes, unwanted

events, emerging opportunities as well as emerging threats.

The following are steps I would undertake to identify risks: Understanding the core things

that should be considered, gathering information, applying tools and techniques of risk

identification, and documenting risks.‖

3. Identifying risk – this is where potential risks that are likely to affect the business are

uncovered and described.

Analyzing risks – here, the risk manager examines each identified risk to understand the

magnitude of their impact on organizational goals.

Risk evaluation – this is where risks are ranked according to the negative effect on an

organization.

Deal with risks – the risk manager develops preventive plans, contingency plans, and risk

mitigation strategies. You will respond depending on the risks that have great risk on the

business.

Risk monitoring – at this stage, tracking and reviewing risks is done.‖

27

4. Software safety and hazard analysis are software quality assurance activities that focus on

the identification and assessment of potential hazards that may affect software negatively

and cause an entire system to fail.

6.9 SUMMARY

Risk management is the process of minimizing any potential problems that may

negatively impact a project's timetable. 'Risk' is any unexpected event that might affect the

people, processes, technology, and resources involved in a project. Unlike 'issues', which are

certain to happen, risks are events that could occur, and you may not be able to tell when.

Because of this uncertainty, project risk requires preparation in order to manage them

efficiently.

Any business, regardless of size or field, can benefit from adopting a systematic plan for

dealing with potential threats through a risk management strategy. Instead of viewing risk

management strategy as a sequence of discrete tasks, it is more helpful to think of it as an

iterative process in which new and existing risks must be continuously detected, analyzed,

managed, and monitored. It allows for continuous assessment and response, ensuring that the

company's people, property, and resources are always safe.

6.10 KEYWORDS

 Reactive risk management: It is a response-based approach to risk.

 Proactive risk management: It identifies the root cause of problem to eliminate it

from reoccurring.

 Predictive risk management: It is the process of performing risk management

activities on hypothetical hazards, risk events, and/or consequences.

 Performance risk: the degree of uncertainty that the product will meet its requirements

and be fit for its intended use.

 Technical risks: It threatens the quality and timeliness of the software to be produced.

6.11 QUESTIONS FOR SELF STUDY

1. Explain the role and importance of Risk Management in Project Management.

2. Briefly discuss the different steps of Risk Management.

3. Write a sample diagram to show the risk projection with impact assessment.

https://www.simplilearn.com/project-and-program-risk-management-article
https://www.simplilearn.com/keeping-an-eye-on-project-management-risks-rar301-article

28

4. What are the predictable risks that can be identified under the set of generic risks?

5. Write a note on Risk Mitigation, Monitoring and Management.

6.12 REFERENCES

1. https://www.projectmanager.com/blog/risk-management-process-steps

2. https://reciprocity.com/resources/proactive-vs-reactive-risk-management-strategies

3. https://www.wrike.com/project-management-guide/faq/what-is-risk-management-in-

project-management/

https://reciprocity.com/resources/proactive-vs-reactive-risk-management-strategies
https://www.wrike.com/project-management-guide/faq/what-is-risk-management-in-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-risk-management-in-project-management/

29

STRUCTURE

7.0 Objectives

7.1 Introduction

7.2 Software Maintenance

7.2.1 Types of Software Maintenance

7.3 Software Supportability – Reengineering

7.4 Business Process Reengineering

7.5 Software Reengineering

7.6 Reverse Engineering

7.6.1 Steps of Software Reverse Engineering:

7.6.2 Reverse Engineering to Understand Data

7.6.3 Reverse Engineering to Understand Processing

7.6.4 Reverse Engineering User Interfaces

7.7 Restructuring

7.7.1 Code Restructuring

7.7.2 Data Restructuring

7.8 Forward Engineering

7.9 The Economics of Reengineering

7.10 Check your progress

7.11 Summary

7.12 Keywords

7.13 Questions for self-study

7.14 References

7.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the necessity of maintenance criterion of the software to make it more

sustainable.

 Get to know a periodical review has to be done on the software to enhance or delete

the features of the project to maintain its competency in the market.

UNIT-7: MAINTENANCE AND REENGINEERING

30

 Create a mechanism for optimization, error correction, deletion of discarded features

and enhancement of existing features.

 Create an estimate for above mentioned mechanism.

7.1 INTRODUCTION

 In this unit, we are going to discuss about maintenance and reengineering. Software

maintenance and support are ongoing activities that occur throughout the life cycle of an

application. During these activities, defects are corrected, applications are adapted to a

changing operational or business environment, enhancements are implemented at the request

of stakeholders, and users are supported as they integrate an application into their personal or

business workflow.

7.2 SOFTWARE MAINTENANCE

Software maintenance is a part of the Software Development Life Cycle. Its primary

goal is to modify and update software application after delivery to correct errors and to

improve performance. Software is a model of the real world. When the real world changes,

the software require alteration wherever possible.

Software Maintenance is an inclusive activity that includes error corrections, enhancement of

capabilities, deletion of obsolete capabilities, and optimization.

Software Maintenance is needed for:-

 Correct errors

 Change in user requirement with time

 Changing hardware/software requirements

 To improve system efficiency

 To optimize the code to run faster

 To modify the components

 To reduce any unwanted side effects.

Thus, the maintenance is required to ensure that the system continues to satisfy user

requirements.

31

7.2.1 TYPES OF SOFTWARE MAINTENANCE

Maintenance can be divided into the following:

 Corrective maintenance:

Corrective maintenance of a software product may be essential either to rectify some bugs

observed while the system is in use, or to enhance the performance of the system.

 Adaptive maintenance:

This includes modifications and updates when the customers need the product to run on new

platforms, on new operating systems, or when they need the product to interface with new

hardware and software.

 Perfective maintenance:

A software product needs maintenance to support the new features that the users want or to

change different types of functionalities of the system according to the customer demands.

 Preventive maintenance:

This type of maintenance includes modifications and updates to prevent future problems of

the software. It goals to attend problems, which are not significant at this moment but may

cause serious issues in future.

7.3 SOFTWARE SUPPORTABILITY - REENGINEERING

Software Re-engineering is a process of software development which is done to

improve the maintainability of a software system. Re-engineering is the examination and

alteration of a system to reconstitute it in a new form. This process encompasses a

combination of sub-processes like reverse engineering, forward engineering, reconstructing

etc.

Objectives of Re-engineering:

 To describe a cost-effective option for system evolution.

 To describe the activities involved in the software maintenance process.

 To distinguish between software and data re-engineering and to explain the problems

of data re-engineering.

Steps involved in Re-engineering:

 Inventory Analysis

 Document Reconstruction

32

 Reverse Engineering

 Code Reconstruction

 Data Reconstruction

 Forward Engineering

Figure 7.1 – Software Reengineering

Re-engineering Cost Factors:

The quality of the software to be re-engineered

 The tool support available for re-engineering

 The extent of the required data conversion

 The availability of expert staff for re-engineering

Advantages of Re-engineering:

 Reduced Risk: As the software is already existing, the risk is less as compared to new

software development. Development problems, staffing problems and specification

problems are the lots of problems which may arise in new software development.

 Reduced Cost: The cost of re-engineering is less than the costs of developing new

software.

 Revelation of Business Rules: As a system is re-engineered , business rules that are

embedded in the system are rediscovered.

33

 Better use of Existing Staff: Existing staff expertise can be maintained and extended

accommodate new skills during re-engineering.

Disadvantages of Re-engineering:

 Practical limits to the extent of re-engineering.

 Major architectural changes or radical reorganizing of the systems data management

has to be done manually.

 Re-engineered system is not likely to be as maintainable as a new system developed

using modern software Re-engineering methods.

7.4 BUSINESS PROCESS REENGINEERING

Business process re-engineering is not just a change, but actually it is a dramatic

change and dramatic improvements. This is only achieved through overhaul the organization

structures, job descriptions, performance management, training and the most importantly, the

use of IT i.e. Information Technology.

Figure 7.2 – Business Process Reengineering

BPR projects have failed sometimes to meet high expectations. Many unsuccessful BPR

attempts are due to the confusion surrounding BPR and how it should be performed. It

becomes the process of trial and error.

Phases of BPR:

According to Peter F. Drucker, ‖ Re-engineering is new, and it has to be done.‖

34

There are 7 different phases for BPR. All the projects for BPR begin with the most critical

requirement i.e. communication throughout the organization.

1. Begin organizational change.

2. Build the re-engineering organization.

3. Identify BPR opportunities.

4. Understand the existing process.

5. Reengineer the process

6. Blueprint the new business system.

7. Perform the transformation.

Objectives of BPR:

Following are the objectives of the BPR:

 To dramatically reduce cost.

 To reduce time requirements.

 To improve customer services dramatically.

 To reinvent the basic rules of the business e.g. The airline industry.

 Customer satisfaction.

 Organizational learning.

Challenges faced by BPR process:

All the BPR processes are not as successful as described. The companies that have start the

use of BPR projects face many of the following challenges :

 Resistance

 Tradition

 Time requirements

 Cost

 Job losses

Advantages of BPR:

Following are the advantages of BPR:

 BPR offers tight integration among different modules.

 It offers same views for the business i.e. same database, consistent reporting and

analysis.

35

 It offers process orientation facility i.e. streamline processes.

 It offers rich functionality like templates and reference models.

 It is flexible.

 It is scalable.

 It is expandable.

Disadvantages of BPR:

Following are the Disadvantages of BPR:

 It depends on various factors like size and availability of resources. So, it will not fit

for every business.

 It is not capable of providing an immediate resolution.

7.5 SOFTWARE REENGINEERING

Software Re-Engineering is the examination and alteration of a system to reconstitute

it in a new form. The principles of Re-Engineering when applied to the software development

process is called software re-engineering. It affects positively at software cost, quality,

service to the customer and speed of delivery. In Software Re-engineering, we are improving

the software to make it more efficient and effective.

The need of software Re-engineering: Software re-engineering is an economical process for

software development and quality enhancement of the product. This process enables us to

identify the useless consumption of deployed resources and the constraints that are restricting

the development process so that the development process could be made easier and cost-

effective (time, financial, direct advantage, optimize the code, indirect benefits, etc.) and

maintainable. The software reengineering is necessary for having-

a) Boost up productivity: Software reengineering increase productivity by optimizing the

code and database so that processing gets faster.

b) Processes in continuity: The functionality of older software product can be still used while

the testing or development of software.

c) Improvement opportunity: Meanwhile the process of software reengineering, not only

software qualities, features and functionality but also your skills are refined, new ideas hit in

your mind. This makes the developers mind accustomed to capturing new opportunities so

that more and more new features can be developed.

36

d) Reduction in risks: Instead of developing the software product from scratch or from the

beginning stage here developers develop the product from its existing stage to enhance some

specific features that are brought in concern by stakeholders or its users. Such kind of

practice reduces the chances of fault fallibility.

e) Saves time: As we stated above here that the product is developed from the existing stage

rather than the beginning stage so the time consumes in software engineering is lesser.

f) Optimization: This process refines the system features, functionalities and reduces the

complexity of the product by consistent optimization as maximum as possible.

Re-Engineering cost factors:

 The quality of the software to be re-engineered.

 The tool support availability for engineering.

 The extent of the data conversion which is required.

 The availability of expert staff for Re-engineering.

7.5.1 SOFTWARE REENGINEERING ACTIVITIES

Figure 7.3 – Software Reengineering Activities

37

1. Inventory Analysis:

Every software organisation should have an inventory of all the applications.

 Inventory can be nothing more than a spreadsheet model containing information that

provides a detailed description of every active application.

 By sorting this information according to business criticality, longevity, current

maintainability and other local important criteria, candidates for re-engineering appear.

 The resource can then be allocated to a candidate application for re-engineering work.

2. Document reconstructing:

 Documentation of a system either explains how it operates or how to use it.

 Documentation must be updated.

 It may not be necessary to fully document an application.

 The system is business-critical and must be fully re-documented.

3. Reverse Engineering:

Reverse engineering is a process of design recovery. Reverse engineering tools extract

data, architectural and procedural design information from an existing program.

4. Code Reconstructing:

To accomplish code reconstructing, the source code is analysed using a reconstructing

tool. Violations of structured programming construct are noted and code is then

reconstructed.

The resultant restructured code is reviewed and tested to ensure that no anomalies have

been introduced.

5. Data Restructuring:

Data restructuring begins with a reverse engineering activity. Current data architecture is

dissected, and the necessary data models are defined. Data objects and attributes are

identified, and existing data structures are reviewed for quality.

6. Forward Engineering:

Forward engineering also called as renovation or reclamation not only for recovers design

information from existing software but uses this information to alter or reconstitute the

existing system in an effort to improve its overall quality.

38

7.6 REVERSE ENGINEERING

Software Reverse Engineering is a process of recovering the design, requirement

specifications and functions of a product from an analysis of its code. It builds a program

database and generates information from this.

The purpose of reverse engineering is to facilitate the maintenance work by improving the

understandbility of a system and to produce the necessary documents for a legacy system.

Reverse Engineering Goals:

 Cope with Complexity.

 Recover lost information.

 Detect side effects.

 Synthesise higher abstraction.

 Facilitate Reuse.

Figure 7.4 – Reverse Engineering Steps

7.6.1 STEPS OF SOFTWARE REVERSE ENGINEERING:

Collection Information:

This step focuses on collecting all possible information (i.e., source design documents etc.)

about the software.

39

 Examining the information:

The information collected in step-1 as studied so as to get familiar with the system.

 Extracting the structure:

This step concerns with identification of program structure in the form of structure chart

where each node corresponds to some routine.

 Recording the functionality:

During this step processing details of each module of the structure, charts are recorded using

structured language like decision table, etc.

 Recording data flow:

From the information extracted in step-3 and step-4, set of data flow diagrams are derived to

show the flow of data among the processes.

 Recording control flow:

High level control structure of the software is recorded.

 Review extracted design:

Design document extracted is reviewed several times to ensure consistency and correctness.

It also ensures that the design represents the program.

 Generate documentation:

Finally, in this step, the complete documentation including SRS, design document, history,

overview, etc. are recorded for future use.

7.6.2 REVERSE ENGINEERING TO UNDERSTAND DATA

Reverse engineering of data occurs at different levels of abstraction and is often the first

reengineering task. At the program level, internal program data structures must often be

reverse engineered as part of an overall reengineering effort. At the system level, global data

structures (e.g., files, databases) are often reengineered to accommodate new database

management paradigms (e.g., the move from flat file to relational or object-oriented database

systems). Reverse engineering of the current global data structures sets the stage for the

introduction of a new system wide database.

Internal data structures. Reverse engineering techniques for internal program data focus on

the definition of classes of objects. This is accomplished by examining the program code with

the intent of grouping related program variables.

Database structure. Regardless of its logical organization and physical structure, a database

allows the definition of data objects and supports some method for establishing relationships

40

among the objects. Therefore, reengineering one database schema into another requires an

understanding of existing objects and their relationships.

7.6.3 REVERSE ENGINEERING TO UNDERSTAND PROCESSING

Reverse engineering to understand processing begins with an attempt to understand and then

extract procedural abstractions represented by the source code. To understand procedural

abstractions, the code is analyzed at varying levels of abstraction: system, program,

component, pattern, and statement.

Things become more complex when the code inside a component is considered. You should

look for sections of code that represent generic procedural patterns. In almost every

component, a section of code prepares data for processing (within the module), a different

section of code does the processing, and another section of code prepares the results of

processing for export from the component. Within each of these sections, you can encounter

smaller patterns; for example, data validation and bounds checking often occur within the

section of code that prepares data for processing.

For large systems, reverse engineering is generally accomplished using a semi-automated

approach. Automated tools can be used to help you understand the semantics of existing

code. The output of this process is then passed to restructuring and forward engineering tools

to complete the reengineering process.

7.6.4 REVERSE ENGINEERING USER INTERFACES

To fully understand an existing user interface, the structure and behaviour of the interface

must be specified. Merlo and his colleagues suggest three basic questions that must be

answered as reverse engineering of the UI commences:

 What are the basic actions (e.g., keystrokes and mouse clicks) that the interface must

process?

 What is a compact description of the behavioral response of the system to these

actions?

 What is meant by a ―replacement,‖ or more precisely, what concept of equivalence of

interfaces is relevant here?

It is important to note that a replacement GUI may not mirror the old interface exactly (in

fact, it may be radically different). It is often worthwhile to develop a new interaction

metaphor. For example, an old UI requests that a user provide a scale factor (ranging from 1

41

to 10) to shrink or magnify a graphical image. A reengineered GUI might use a slide-bar and

mouse to accomplish the same function.

7.7 RESTRUCTURING

Software restructuring modifies source code and/or data in an effort to make it

amenable to future changes. In general, restructuring does not modify the overall program

architecture. It tends to focus on the design details of individual modules and on local data

structures defined within modules. If the restructuring effort extends beyond module

boundaries and encompasses the software architecture, restructuring becomes forward

engineering (Section 7.8).

Restructuring occurs when the basic architecture of an application is solid, even though

technical internals need work. It is initiated when major parts of the software are serviceable

and only a subset of all modules and data need extensive modification.

7.7.1 CODE RESTRUCTURING

Code restructuring is performed to yield a design that produces the same function but with

higher quality than the original program. In general, code restructuring techniques using

Boolean algebra and then apply a series of transformation rules that yield restructured logic.

The objective is to take ―spaghetti-bowl‖ code and derive a procedural design that conforms

to the structured programming philosophy.

Other restructuring techniques have also been proposed for use with reengineering tools. A

resource exchange diagram maps each program module and the resources (data types,

procedures and variables) that are exchanged between it and other modules. By creating

representations of resource flow, the program architecture can be restructured to achieve

minimum coupling among modules.

7.7.2 DATA RESTRUCTURING

Before data restructuring can begin, a reverse engineering activity called analysis of source

code should be conducted. All programming language statements that contain data

definitions, file descriptions, I/O, and interface descriptions are evaluated. The intent is to

extract data items and objects, to get information on data flow, and to understand the existing

data structures that have been implemented. This activity is sometimes called data analysis.

Once data analysis has been completed, data redesign commences. In its simplest form, a data

record standardization step clarifies data definitions to achieve consistency among data item

42

names or physical record formats within an existing data structure or file format. Another

form of redesign, called data name rationalization, ensures that all data naming conventions

conform to local standards and that aliases are eliminated as data flow through the system.

When restructuring moves beyond standardization and rationalization, physical modifications

to existing data structures are made to make the data design more effective. This may mean a

translation from one file format to another, or in some cases, translation from one type of

database to another.

7.8 FORWARD ENGINEERING

Over the past few decades, many mainframe applications have been reengineered to

accommodate client-server architectures (including WebApps). In essence, centralized

computing resources (including software) are distributed among many client platforms.

Although a variety of different distributed environments can be designed, the typical

mainframe application that is reengineered into a client-server architecture has the following

features:

 Application functionality migrates to each client computer.

 New GUI interfaces are implemented at the client sites.

 Database functions are allocated to the server.

 Specialized functionality (e.g., compute-intensive analysis) may remain at the server

site.

 New communications, security, archiving, and control requirements must be

established at both the client and server sites.

It is important to note that the migration from mainframe to client-server computing requires

both business and software reengineering. In addition, an ―enterprise network infrastructure‖

should be established.

Reengineering for client-server applications begins with a thorough analysis of the business

environment that encompasses the existing mainframe. Three layers of abstraction can be

identified. The database sits at the foundation of a client-server architecture and manages

transactions and queries from server applications. Yet these transactions and queries must be

controlled within the context of a set of business rules (defined by an existing or reengineered

business process). Client applications provide targeted functionality to the user community.

43

The functions of the existing database management system and the data architecture of the

existing database must be reverse engineered as a precursor to the redesign of the database

foundation layer. In some cases a new data model is created. In every case, the client-server

database is reengineered to ensure that transactions are executed in a consistent manner, that

all updates are performed only by authorized users, that core business rules are enforced (e.g.,

before a vendor record is deleted, the server ensures that no related accounts payable,

contracts, or communications exist for that vendor), that queries can be accommodated

efficiently, and that full archiving capability has been established.

The business rules layer represents software resident at both the client and the server. This

software performs control and coordination tasks to ensure that transactions and queries

between the client application and the database conform to the established business process.

The client applications layer implements business functions that are required by specific

groups of end users. In many instances, a mainframe application is segmented into a number

of smaller, reengineered desktop applications. Communication among the desktop

applications (when necessary) is controlled by the business rules layer.

7.9 THE ECONOMICS OF REENGINEERING

In a perfect world, every unmaintainable program would be retired immediately; to be

replaced by high-quality, reengineered applications developed using modern software

engineering practices. But we live in a world of limited resources. Reengineering drains

resources that can be used for other business purposes. Therefore, before an organization

attempts to reengineer an existing application, it should perform a cost-benefit analysis.

A cost-benefit analysis model for reengineering has been proposed by Sneed. Nine

parameters are defined:

P1 = current annual maintenance cost for an application

P2 = current annual operations cost for an application

P3 = current annual business value of an application

P4 = predicted annual maintenance cost after reengineering

P5 = predicted annual operations cost after reengineering

P6 = predicted annual business value after reengineering

P7 = estimated reengineering costs

P8 = estimated reengineering calendar time

44

P9 = reengineering risk factor (P9 1.0 is nominal)

L = expected life of the system

The cost associated with continuing maintenance of a candidate application (i.e.,

reengineering is not performed) can be defined as

Cmaint = [P3 (P1 + P2)] x L - equation 1

The costs associated with reengineering are defined using the following relationship:

Creeng = P6 - (P4 + P5) x (L - P8) - (P7 x P9) - equation 2

Using the costs presented in Equations 1 and 2, the overall benefit of reengineering can be

computed as

Cost benefit = Creeng - Cmaint - equation 3

The cost-benefit analysis presented in these equations can be performed for all high priority

applications identified during inventory analysis. Those applications that show the highest

cost-benefit can be targeted for reengineering, while work on others can be postponed until

resources are available.

7.10 CHECK YOUR PROGRESS

1. What is the purpose of Software Maintenance?

2. What are the types of software maintenance?

3. What are the objectives of Software Reengineering?

4. Name of the Software Reengineering Activities.

Answers to check your progress:

1. The purpose of Software Maintenance:

 Correct errors

 Change in user requirement with time

 Changing hardware/software requirements

 To improve system efficiency

 To optimize the code to run faster

 To modify the components

 To reduce any unwanted side effects.

2. Corrective maintenance

 Adaptive maintenance

 Perfective maintenance

45

 Preventive maintenance

3. Objectives of Re-engineering:

 To describe a cost-effective option for system evolution.

 To describe the activities involved in the software maintenance process.

 To distinguish between software and data re-engineering and to explain the problems

of data re-engineering.

4. The Software Reengineering Activities are:

 Inventory Analysis

 Document reconstructing

 Reverse Engineering

 Code Reconstructing

 Data Restructuring

 Forward Engineering

7.11 SUMMARY

Software maintenance and support are ongoing activities that occur throughout the

life cycle of an application. During these activities, defects are corrected, applications are

adapted to a changing operational or business environment, enhancements are implemented at

the request of stakeholders, and users are supported as they integrate an application into their

personal or business workflow.

Reengineering occurs at two different levels of abstraction. At the business level,

reengineering focuses on the business process with the intent of making changes to improve

competitiveness in some area of the business. At the software level, reengineering examines

information systems and applications with the intent of restructuring or reconstructing them

so that they exhibit higher quality.

Software reengineering encompasses a series of activities that include inventory analysis,

document restructuring, reverse engineering, program and data restructuring, and forward

engineering. The intent of these activities is to create versions of existing programs that

exhibit higher quality and better maintainability—programs that will be viable well into the

twenty-first century.

The cost-benefit of reengineering can be determined quantitatively. The cost of the status

quo, that is, the cost associated with ongoing support and maintenance of an existing

46

application, is compared to the projected costs of reengineering and the resultant reduction in

maintenance and support costs. In almost every case in which a program has a long life and

currently exhibits poor maintainability or supportability, reengineering represents a cost-

effective business strategy.

7.12 KEYWORDS

 Corrective maintenance: It aims to correct any remaining errors regardless of where

they may cause specifications, design, coding, testing, and documentation, etc.

 Adaptive maintenance: It is the modification of software to keep it usable after a

change to its operating environment.

 Perfective software maintenance: It aims to adjust software by adding new features as

necessary and removing features that are irrelevant or not effective in the given

software.

 Preventative Software Maintenance: It helps to make changes and adaptations to

your software so that it can work for a longer period of time.

7.13 QUESTIONS FOR SELF STUDY

1. Explain the Role of Maintenance and Re-engineering in Software Project Management.

2. Describe Software Reengineering with a neat diagram

3. Write a note on Business Process Engineering, challenges, advantages and disadvantages.

4. Explain Software Re-engineering activities with a neat diagram.

5. What are the different types of Software Reverse Engineering? Explain each one of the

briefly.

6. What are the differences between restructuring and Forward Engineering?

7.14 REFERENCES

1. https://www.javatpoint.com

2. https://www.geeksforgeeks.org

3. https://www.techtarget.com/

https://www.techtarget.com/

47

STRUCTURE

8.0 Objectives

8.1 Introduction

8.2 Introduction to project procurement management

8.3 Planning Purchase and Acquisitions

8.3.1 Organizational Process Assets

8.3.2 Contract Types

8.4 Planning contracting

8.5 Requesting seller responses

8.6 Selecting sellers

8.7 Administering the contract, Closing the contract

8.8 Check your progress

8.9 Summary

8.10 Keywords

8.11 Questions for self-study

8.12 References

8.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the different between business requirements and operational requirements.

 Manage the Procurement Process and the Supply Base Efficiently and Effectively.

 Develop strong relationships with other groups within the organization.

 Support organizational Goals and Objective.

8.1 INTRODUCTION

 In this unit, we are going to discuss about project procurement management. The

success of many IT projects that use outside resources is often due to good project

procurement management. Project procurement management includes the processes required

to acquire goods and services for a project from outside the performing organization.

Organizations can be either the buyer or seller of products or services under a contract or

other agreement.

UNIT-8: PROJECT PROCUREMENT MANAGEMENT

48

8.2 INTRODUCTION TO PROJECT PROCUREMENT MANAGEMENT

Project procurement management is the business process by which projects are

contracted, outsourced, and finished while the necessary products to complete the projects are

selected, coordinated, and maintained. This management concept also applies to the

collaborative relationships formed with outside suppliers to obtain, purchase, or maintain a

stock of particular goods or services. Most project procurement management relationships are

based on a contract to ensure that the required goods or services are received in a timely

manner and in the proper condition to meet the standards of the purchasing company. Cost,

time, and quality are three main concerns of project procurement management.

Project procurement management is an important part of business that is often controlled by

the accounting and purchasing departments of an organization. When this process is

employed, strong and structured relationships are created to benefit the purchasing

organization most directly; a number of vendors typically bid to receive a contract with the

purchasing company and a project procurement manager must then select the most beneficial

supplier to form a business relationship with. Project procurement management is vitally

important because it encourages fair representation of both the supplier and the purchaser in

addition to making considerations for purchase planning, the determination of standards,

supplier research, price negotiation, and inventory control.

8.3 PLANNING PURCHASE AND ACQUISITIONS

The purpose of the plan purchases and acquisitions process is to identify which

project needs can best be met by purchasing and acquiring products, services, or results

outside the project organization. This process involves consideration of whether, how, what,

how much, and when to acquire. When the project obtains products, services, and results

required for project performance from outside the performing organization, the processes

from plan purchases and acquisitions through contract closure are performed for each item to

be purchased or acquired.

The plan purchases and acquisitions process encompasses the consideration of potential

vendors, particularly if the buyer likes to exercise some degree of influence or control over

contracting decisions. Emphasis should also be given to who is responsible for obtaining or

holding any relevant permits and professional licenses that may be required by legislation,

regulation, or organizational policy in executing the project.

49

The project schedule is a key input to create plan purchases and acquisitions process.

Decisions made in developing the procurement management plan can also influence the

project schedule and are integrated with schedule development, activity resource estimating

and make or buy decisions.

8.3.1 ORGANIZATIONAL PROCESS ASSETS

Existing formal and informal procurement-related policies, procedures, guidelines, and

management systems that are considered in developing the procurement management plan

and selecting the contract types to be used are provided by organizational process assets. In

some application areas, organizations also have established a multi-tier supplier system of

selected and pre-qualified sellers to reduce the number of direct sellers to the organization

and establish an extended supply-chain.

Project scope statement

Project boundaries, requirements, constraints and assumptions related to the project scope are

described in the project scope statement. Constraints are specific factors that can limit both

the buyers and sellers options. One of the most common constraints for many projects is

availability of resources. Other constraints can involve required delivery dates, available

skilled resources and organizational policies. Assumptions are factors that will be considered

to be true and which can include health, safety, security, performance, environmental,

insurance, intellectual property rights, equal employment opportunity, licenses and permits.

The project scope statement provides the list of deliverables and acceptance criteria for the

project and its products, services and results. Consideration is given to all such factors that

may need to be included in the procurement documentation and flowed down within a

contract to vendors.

Important information about any technical issues or concerns related to the products, services,

and results of the project that are considered during the plan purchases and acquisitions

process is provided by the product scope description component of the project scope

statement, whereas the structured and detailed plan for the projects scope is provided by the

work breakdown structure (WBS) and WBS dictionary components of the project scope

statement.

50

Work breakdown structure

The WBS establishes the relationship among all the components of the project and the project

deliverables.

WBS dictionary

It provides detailed statements of work that provide an identification of the deliverables and a

description of the work within each WBS component required to produce each deliverable.

Project management plan

The overall plan for managing the project is provided in the project management plan. It

includes subsidiary plans such as a scope management plan. Procurement management plan,

quality management plan, and contract management plans provide guidance and direction for

procurement management planning. To the extent that other planning outputs are available,

those other planning outputs are considered during the plan purchases and acquisition

process.

Risk management

It contains risk-related information such as the identified risks, risk owners and risk responses

mitigations strategies and contingency plans.

Risk-related contractual agreements

It includes agreements for insurance, services and other items as appropriate that are prepared

to specify each party‘s responsibility for specific risks should they occur.

8.3.2 CONTRACT TYPES

There are various types of contracts for different types of purchases. The type pf contract

used and specific contract terms and conditions set the degree of risk being assumed by both

the buyer and seller. Contracts generally fall into one of three broad categories.

Fixed price or lump-sum contracts

Fixed price or lump-sum contracts involve a fixed price for a well-defined product. It can also

include incentives for meeting or exceeding selected project objectivities such as scheduled

targets. The simplest form of a fixed price contract is a purchase order for a specified item to

be delivered by a specified data for a specified price.

51

Cost-reimbursable contracts

Cost-reimbursable contract involves payment (reimbursement) to the seller‘s actual costs plus

a fee typically representing seller profit. Costs are usually classified as direct costs or indirect

costs. Direct costs are costs incurred for the exclusive benefit of the project (salaries of full

time project staff, etc.). Indirect costs are usually calculated as a percentage of direct costs.

Cost-reimbursable contracts often include incentive clauses where if the seller meets or

exceeds selected projects objectives, such as schedule targets or total cost, then the seller

receives an incentive or bonus payment. Three common types of cost-reimbursable contracts

are CPF, CPFF and CPIF.

Cost-Plus-Fee (CPF) or Cost-Plus-Percentage of cost (CPPC)

Sellers receives a fee that varies with the actual cost, calculated as an agreed-upon percentage

of the costs and also reimbursed for allowable costs for performing the contract work.

Cost-Plus-Incentive-Fee (CPIF)

The seller receives a predetermined fee and incentive bonus based upon achieving certain

performance objective levels set in the contract and is reimbursed for allowable costs for

performing the contract work. In some CPIF contracts, if the final costs are less than the

expected costs, then both the buyer and seller benefit from the cost savings based upon a pre-

negotiated sharing formula.

Time and Material (T&M) contracts

Time and material contracts are a hybrid type of contractual arrangement that contains

aspects of both cost-reimbursable and fixed-price type arrangements. These types of contracts

resemble cost reimbursable type arrangements in that they are open ended. Buyer does not

define the full value of the agreement and the exact quantity of items to be delivered at the

time of the contract award. Thus, time and material contracts can grow in contract value as if

they were cost-reimbursable type arrangements. Conversely, time and material arrangements

can also resemble fixed-price arrangements. For example, the buyer and seller can preset unit

rates when both parties agree on the rates for a specific resource category. The requirements

(standard or custom product version, performance reporting and cost data submittals) that a

buyer imposes on a seller, along with other planning considerations, such as the degree of

market competition and degree of risk, will also determine which type of contract will be

used. In addition, the seller can consider some of those specific requirements as items that

have additional costs. Another consideration relates to the future potential of the product or

52

service being acquired by the project team. Where such potential can be significant, sellers

may be inclined or induced to charge prices that are less than would be the case without such

future sale potential. While this can reduce the costs to the project, there are legal

ramifications if the buyer promises such potential and is not, in fact, realized.

8.4 PLANNING CONTRACTING – TOOLS AND TECHNIQUES

Standard Forms

Standard contracts, standard descriptions of procurement items, non-disclosure agreements,

proposal evaluation criteria checklists, or standardized versions of all parts of the needed bid

documents are included in standard forms. Organizations that perform substantial amounts of

procurement can have many of these documents standardized. Buyer and seller organizations

performing intellectual property transactions ensure that non-disclosure agreements are

approved and accepted before disclosing any project specific intellectual property

information to other party.

Procurement Documents

These documents are used to seek proposals from perspective sellers. A term such as

proposal is generally used when other considerations, such as technical skills or technical

approach, are paramount and terms such as bid, tender, or quotation is generally used when

the seller selection decision will be based on price (as when buying commercial or standard

items). However, the terms are often used interchangeably and care is taken not to make

unwarranted assumptions about the implications of the term used. Common names for

different types of procurement documents include invitation for bid, request for proposal,

request for quotation, tender notice, invitation for negotiation, and contractor initial response.

8.5 REQUESTING SELLER RESPONSES – TOOLS AND TECHNIQUES

Bidder Conferences

Also called as contractor conferences, vendor conferences and pre-bid conferences are

meetings with perspective sellers prior to preparation of a bid or proposal and to ensure that

all prospective sellers have a clear, common understanding of the technical and contract

requirements. Responses to questions can be incorporated into the procurement documents as

amendments. All potential sellers are given equal standing during this initial buyer and seller

interaction to produce the best bid.

53

Advertising

Sellers can often be expanded by placing advertisements in general circulation publications

such as newspapers or in specialty publications such as professional journals. Some

government jurisdictions require public advertising of pending government contracts.

Develop Qualified Sellers List

If information is readily available in the organizational assets qualified or approved sellers'

lists can be developed from there also. The project team can also develop its own sources

whether or not that data is available. General information is widely available through internet,

library directions, relevant local associations, trade catalogues, and similar sources. Detailed

information on specific sources requires more extensive effort, such as site visits or contact

with previous customers. Procurement documents can also be sent to determine if some or all

the prospective sellers have an interest in becoming a qualified potential seller.

Select Sellers

Bids or proposals are received evaluation criteria, as applicable, to select one or more sellers

who are both qualified and acceptable as a seller are applied under select sellers process.

Many factors can be evaluated in the seller selection decision process.

Primary determinant for an off-the-shelf item can be the price or cost. But if the seller proves

unable to deliver the products, services or results in a timely manner, the lowest proposed

price may not be the lowest cost.

Proposals are often separated into technical and commercial sections with each evaluated

separately. Sometimes management sections are required as part of the proposal and also

have to be evaluated.

Critical products services and results to mitigate risks that can be associated with issues such

as delivery schedules and quality requirements could require multiple sources. The

potentially higher cost associated with such multiple sellers, including any loss of possible

quantity discounts and replacement and maintenance issues are considered.

The overall process of requesting responses for sellers and evaluating sellers' responses can

be repeated on major procurement items. A short list of qualified sellers can be established

based on a preliminary proposal. A more detailed evaluation can then be conducted based on

a more detailed and comprehensive proposal that is requested from the sellers on the short

list.

54

8.6 SELECT SELLERS – TOOLS AND TECHNIQUES

Weighting systems

The method for qualifying qualitative data to minimize the effect of personal prejudice on the

seller section is called a weighing system. Most such systems involve assigning a numerical

weight to each of the evaluation criteria, rating the prospective sellers on each criterion,

multiplying the weight by the rating and totaling the resultant products to compute an overall

score.

Independent Estimates

The independent estimate is sometimes referred to as a should-cost estimate which the

procuring organization can either prepare on its own or have an independent estimate of the

costs as a check on proposed pricing for many procurement items. Significant differences

from these cost estimates can be an indication that the contract statement of work was not

adequate that the prospective seller either misunderstood or failed to respond fully to the

contract statement of work or that the marketplace changed.

Screening System

Establishing minimum requirements of performance for one of the evaluation criteria are

involved in the screening system that can employ a weighting system and independent

estimates. For example, a prospective seller might be required to propose a project manager

who had specific qualifications before the remainder of the proposal would be considered.

These screening systems are used to provide a weighted ranking from best to worst for all

sellers who submitted a proposal.

Contract Negotiation

In order to reach to a mutual agreement prior to signing the contract, structure and

requirements of the contract are clarified in contract negotiation. Final contract language

reflects all agreements reached. Subjects covered include responsibilities and authorities,

applicable terms and law, technical and business management approaches, proprietary rights,

contract financing, technical solution, overall schedule payments and price. Contract

negotiations conclude with a document that can be signed by both buyer and seller or the

contract can be a revised offer by the seller or a counter offer by the buyer. For complex

procurement items contract negotiation can be independent process with inputs (e.g. an issues

or open items list) and outputs (e.g. documented decisions) of its own. For simple

55

procurement items, the terms and conditions of the contract can be fixed and non-negotiable

and only need to be accepted by the seller.

Even though the project manager and other members of the project management team may be

present during negotiations to provide, if needed, any clarification of the project‘s technical

quality and management requirements, the project manager may not be the lead negotiator on

the contract.

Seller Rating Systems

The seller performance evaluation documentation generated during the contract

administration process for previous sellers is one source of relevant information. Seller rating

systems are developed by many organizations and use information such as the seller‘s past

performance, quality ratings, delivery performance and contractual compliance. These rating

systems are used in addition to the proposal evaluations screening system to select sellers.

Expert Judgment

Expert judgment is used in evaluating seller proposals. A multi-discipline review team

accomplishes the evaluation of proposals with expertise in each of the areas covered by

procurement documents and proposed contract. This can include expertise from functional

disciplines such as contracts, legal, finance, accounting, engineering, design, research,

development, sales and manufacturing.

Proposal Evaluation Techniques

Based on some expert judgment and some form of evaluation criteria, many different

techniques can be used to rate and score proposals. Evaluation criteria can involve both

objective and subjective components. Evaluation criteria are usually assigned predefined

weighting with respect to each other when used for a formalized proposal evaluation. The

proposal evaluation then uses inputs from multiple reviews that are obtained during the select

sellers' process and any significant differences in scoring are resolved. Using a weighting

system that determines the total weighted score for each proposal, an overall assessment and

comparison of all proposals can then be developed. These proposal evaluation techniques

also can employ a screening system and use data from a seller rating system.

56

8.7 ADMINISTERING AND CLOSING THE CONTRACT – TOOLS AND

TECHNIQUES

A contract is a legal relationship subject to remedy in the courts that is awarded to

each selected seller. It can be in the form of a complex document or a simple purchase order.

Regardless of the documents complexity, a contract is a mutually binding legal agreement

that obligates the seller to provide the specified products, services, or results and obligates the

buyer to pay seller.

The major components in a contract document generally include section headings, statement

of work, schedule period of performance bonds, subcontractor approval, change request

handling and a termination and disputes mechanism.

Contract Management Plan

Each contract management plan is a subset of the project management plan. A plan to

administer the contract for significant purchases or acquisitions is prepared based upon the

specific buyer, specified items within the contract, such as documentation and delivery, and

performance requirements that the buyers and sellers must meet. The plan covers the contract

administration activities throughout the life of the contact.

Resource Availability

The quantity and availability of resources and those dates on which each specific resource

can be active or idle are documented.

Procurement Management Plan

It is updated to reflect any approved change requests that are procurement management.

Tools and techniques of contract administration

 Contract change control system

 Buyer-conducted performance review

 Inspections and audits

 Performance reporting

 Payment system

 Claims administration

 Records management system

 Information technology

57

Contract Closure

Contract addresses each contact applicable to the project or a project phase. It supports the

close project process as it involves verification that all work and deliverables were

acceptable. The contract closure process also involves administrative activities such as

updating records to reflect final results and archiving such information for future use. In

multi-phase projects the team of a contract may only be applicable to that phase of the

project. Unresolved claims may be subject to litigation after contract closure.

Early termination of a contract can result from a mutual agreement of the parties or from the

default of one of the parties. The rights and responsibilities of the parties in the event of an

early termination are contained in a terminations clause of the contract based upon those

contracts or a portion of the project for clause or convenience at any time.

The buyer may have to compensate the seller for seller‘s preparations and for any completed

and accepted work related to the terminated part of the contract as per those contract terms

and conditions.

8.8 CHECK YOUR PROGRESS

1. What is project procurement management?

2. Name the Organizational Process assets.

3. What are Procurement documents?

4. Which are the tools and techniques of contract administration?

Answers to check your progress:

1. Project procurement management is the business process by which projects are

contracted, outsourced, and finished while the necessary products to complete the

projects are selected, coordinated, and maintained. This management concept also

applies to the collaborative relationships formed with outside suppliers to obtain,

purchase, or maintain a stock of particular goods or services. Most project procurement

management relationships are based on a contract to ensure that the required goods or

services are received in a timely manner and in the proper condition to meet the

standards of the purchasing company. Cost, time, and quality are three main concerns of

project procurement management.

2. Project Scope Statement

 Work Breakdown Structure

58

 WBS Dictionary

 Project Management Plan

 Risk Management

 Risk-related Contractual Agreements

3. These documents are used to seek proposals from perspective sellers. A term such as

proposal is generally used when other considerations, such as technical skills or

technical approach, are paramount and terms such as bid, tender, or quotation is

generally used when the seller selection decision will be based on price (as when buying

commercial or standard items). However, the terms are often used interchangeably and

care is taken not to make unwarranted assumptions about the implications of the term

used. Common names for different types of procurement documents include invitation

for bid, request for proposal, request for quotation, tender notice, invitation for

negotiation, and contractor initial response.

4. Contract change control system

 Buyer-conducted performance review

 Inspections and audits

 Performance reporting

 Payment system

 Claims administration

 Records management system

 Information technology

8.9 SUMMARY

The success of many IT projects that use outside resources is often due to good

project procurement management. Project procurement management includes the processes

required to acquire goods and services for a project from outside the performing organization.

Organizations can be either the buyer or seller of products or services under a contract or

other agreement. There are four main processes in project procurement management:

a. Planning procurement management involves determining what to procure and when and

how to do it. In procurement planning, one must decide what to outsource, determine the

type of contract, and describe the work for potential sellers. Sellers are providers,

contractors, or suppliers who provide goods and services to other organizations. Outputs

of this process include a procurement management plan, procurement statements of work,

59

procurement documents, source selection criteria, make-or-buy decisions, change

requests, and project documents updates.

b. Conducting procurements involves obtaining seller responses, selecting sellers, and

awarding contracts. Outputs include selected sellers, agreements, resource calendars,

change requests, and updates to the project management plan and other project

documents.

c. Controlling procurements involves managing relationships with sellers, monitoring

contract performance, and making changes as needed. The main outputs of this process

include work performance information, change requests, and updates to the project

management plan, project documents, and organizational process assets.

d. Closing procurements involves completion and settlement of each contract or agreement,

including resolution of any open items. Outputs include closed procurements and

organizational process assets updates.

8.10 KEYWORDS

 Project scope: It is the part of project planning that involves determining and

documenting a list of specific project goals, deliverables, tasks, costs and deadlines.

 Bidding: It is used in business all the time to determine the supplier chosen by the Project

Management, Engineering, and Procurement.

 Software Development Contract: It is an agreement entered into between a company

and a software developer where the company mentions their concepts and requirements.

 Procurement: This is when you need to purchase, rent or contract with some external

resource to meet your project goal.

8.11 QUESTIONS FOR SELF STUDY

1. Briefly explain the role of Project Procurement Planning in SPM.

2. Name of the different types of contract and explain each one briefly.

3. Discuss the different tools and techniques used for selecting sellers.

4. How to perform administering and closing of the contract with different tools and

techniques?

60

8.12 REFERENCES

1. https://study.com/learn/lesson/project-procurement-management-plan-process.html

2. http://aspalliance.com/1149_Understanding_Project_Procurement_Management.all

3. https://wachemo-elearning.net/courses/31778/lessons/chapter-nine-project-procurement-

management/topic/9-2-importance-of-project-procurement-management/

Karnataka State Open University

Mukthagangothri, Mysore – 570 006.

Dept. of Studies and Research in Management

MBA IT Specialization

IV Semester

MBSC-4.1G Software Project Management

Block 3

PREFACE

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engineering

problem solving. It is a key factor that differentiates modern products and services. It is

embedded in systems of all kinds: transportation, medical, telecommunications, military,

industrial processes, entertainment, office products, . . . the list is almost endless. Software is

virtually inescapable in a modern world. And as we move into the twenty-first century, it will

become the driver for new advances in everything from elementary education to genetic

engineering.

When a computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify and even

easier to use—it can and does change things for the better. But when software fails—when its

users are dissatisfied, when it is error prone, when it is difficult to change and even harder to

use—bad things can and do happen. We all want to build software that makes things better,

avoiding the bad things that lurk in the shadow of failed efforts. To succeed, we need

discipline when software is designed and built. We need an engineering approach.

The whole material is organized into four modules each with four units. Each unit

lists the objectives of the study along with the relevant questions, illustrations and suggested

reading to better understand the concepts.

Wish you happy reading!!!

KARNATAKA STATE OPEN UNIVERSITY

MUKTHAGANGOTRI, MYSURU-06

Dept. of Studies and Research in Management

MBA IT Specialization

IV Semester

MBSC-4.1G Software Project Management

BLOCK 3: SOFTWARE PRODUCT / PROJECT MANAGEMENT

UNIT-9: PRODUCT METRICS 1-22

UNIT-10: USER – INTERFACE DESIGN 23-38

UNIT-11: PROJECT MANAGEMENT CONCEPTS 39-55

UNIT-12: ESTIMATION FOR SOFTWARE PROJECT MANAGEMENT 56-79

BLOCK 3 INTRODUCTION

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engineering

problem solving. It is a key factor that differentiates modern products and services. It is

embedded in systems of all kinds: transportation, medical, telecommunications, military,

industrial processes, entertainment, office products, etc. Software will become the driver for

new advances in everything from elementary education to genetic engineering.

In this block, we are discussing about the art and discipline of software project management

like software project management in which software projects planned, implemented,

monitored and controlled.

This block consists of four units and is organized as follows:

Unit 9: Product Metrics: Framework for product metrics, Metrics for Requirement Model,

Metrics for Design Model, Design Metrics for WebApps, Metrics for Source Code,

Metrics for Testing and Metrics for Maintenance

Unit 10: User – Interface Design: The Golden Rules, User Interface Analysis and Design,

Interface Analysis, Interface Design Steps, WebApp Interface Design, Design

Evaluation

Unit 11: Project Management concepts: The Management Spectrum, People, The Product,

The Process, The Project, W5HH Principle, Critical Practices

Unit 12: Estimation for Software Projects: Observations on Estimation, The Project

Planning Process, Software Scope and Feasibility, Resources, Software Project

Estimation, Decomposition Techniques, Empirical Estimation Models, Estimation

for Object Oriented Projects, Specialized Estimation Techniques

1

STRUCTURE

9.0 Objectives

9.1 Introduction

9.2 Introduction to product metrics

9.3 Framework for product metrics

9.4 Metrics for Requirement Model

9.5 Metrics for Design Model

9.6 Design Metrics for WebApps

9.7 Metrics for Source Code

9.8 Metrics for Testing

9.9 Metrics for Maintenance

9.10 Check Your Progress

9.11 Summary

9.12 Key words

9.13 Questions for self-study

9.14 References

9.0 OBJECTIVES

After studying this unit, you will be able to:

 Explain about software product

 Analyze Project management

 Discuss software product metrics and their requirements

 Evaluate software metrics

 Describe metrics for testing

9.1 INTRODUCTION

 In this unit, we are going to discuss about product metrics. Software metrics provide a

quantitative way to assess the quality of internal product attributes, thereby enabling the

software engineer to assess quality before the product is built. This unit introduces concepts

such as framework of product metrics, Metrics for Requirement Model, Metrics for Design

UNIT-9: PRODUCT METRICS

2

Model and web applications. Also, Metrics for Source Code, Metrics for Testing , Metrics for

Maintenance are discussed in detail.

9.2 INTRODUCTION TO PRODUCT METRICS

A key element of any engineering process is measurement. Measures are used to

better understand the attributes of the models that we create and to assess the quality of the

engineered products or systems that is built.

Software measurement is concerned with deriving a numeric value or profile for an attribute

of a software component, system, or process. By comparing these values to each other and to

the standards that apply across an organization, based on these measures we can draw

conclusions about the quality of software, or assess the effectiveness of software processes,

tools, and methods.

Software metric is a characteristic of a software system, system documentation, or

development process that can be objectively measured. Examples of metrics like the size of a

product in lines of code; the Fog index, which is a measure of the readability of a passage of

written text; the number of reported faults in a delivered software product; and the number of

person-days required to develop a system component.

Software metrics domain is classified into process, project, and product metrics. Product

metrics are private to an individual are often combined to develop project metrics that are

public to a software team. Project metrics are then consolidated to create process metrics that

are public to the software organization as a whole. A software engineer needs objective

criteria to guide the design of data, architecture, interfaces, and components. The tester needs

quantitative guidance that will help to generate and select the test cases to reach targets.

Technical metrics provide a basis from which analysis, design, coding, and testing can be

conducted more objectively and assessed more quantitatively.

Technical metrics provide us with a systematic way to evaluate quality based on a set of rules.

These rules provide the software engineer with on-the-spot, rather than after-the-fact insight.

This enables the engineer to discover and correct potential problems before they become

catastrophic defects.

3

9.3 FRAMEWORK FOR PRODUCT METRICS

Here we can discuss the measures that can be used to estimate the quality of the

product as it is being engineered. These measures of internal product attributes provide the

software engineer with a real-time indication of the efficacy of the analysis, design, and code

models; the effectiveness of test cases; and the overall quality of the software to be built.

As we discussed earlier, measurement assigns numbers or symbols to attributes of entities in

the real world. To perform this, a measurement model encompassing a consistent set of rules

is required. It is required to establish a fundamental framework and a set of basic principles for

the evaluation of technical metrics for software.

9.3.1 THE CHALLENGE OF TECHNICAL METRICS

Although there are other measures have been proposed, each takes different view of what

complexity is and what attributes of a system lead to complexity. Hence it is required to

measure and control software complexity. It is not easy to derive a single value metric; it

should be possible to develop measures of different internal program attributes like effective

modularity, functional independence, and other. These measures and the metrics derived can

be used as independent indicators of the quality of analysis and design models. But here again,

problems arise that many people argue that technical measurement conducted during the early

stages of the software process provides software engineers with a consistent and objective

mechanism for assessing quality.

In spite of the intuitive connections between the internal structure of software products or

technical metrics and its external product and process attributes, there have actually been very

few scientific attempts to establish specific relationships. There are a number of reasons why

this is so; the most commonly cited is the impracticality of conducting relevant experiments.

Each of the challenge noted here is a cause for caution, Measurement is essential if quality is

to be achieved.

9.3.2 MEASUREMENT PRINCIPLES

Measurement process that can be characterized by five activities:

1. Formulation: The derivation of software measures and metrics those are appropriate for the

representation of the software that is being considered.

The principles that can be associated with the formulation of technical metrics are

 The objectives of measurement should be established before data collection begins.

4

 Each technical metric should be defined in an unambiguous manner.

 Metrics should be derived based on a theory that is valid for the domain of application.

 Metrics should be tailored to best accommodate specific products and processes.

2. Collection: The mechanism used to accumulate data required to derive the formulated

metrics.

3. Analysis: The computation of metrics and the application of mathematical tools.

4. Interpretation: The evaluation of metrics results in an effort to gain insight into the quality

of the representation.

5. Feedback: Recommendations derived from the interpretation of technical metrics

transmitted to the software team.

9.3.3 The Attributes of Effective Software Metrics

Hundreds of metrics have been proposed for computer software, but not all provide practical

support to the software engineer. Below are the set of attributes that should be encompassed

by effective software metrics.

• Simple and computable: It should be relatively easy to learn how to derive the metric, and

its computation should not demand inordinate effort or time.

• Empirically and intuitively persuasive: The metric should satisfy the engineer’s intuitive

notions about the product attribute under consideration (e.g., a metric that measures module

cohesion should increase in value as the level of cohesion increases).

• Consistent and objective: The metric should always yield results that are unambiguous. An

independent third party should be able to derive the same metric value using the same

information about the software.

• Consistent in its use of units and dimensions: The mathematical computation of the metric

should use measures that do not lead to strange combinations of units.

• Programming language independent: Metrics should be based on the analysis model, the

design model, or the structure of the program itself. They should not be dependent on the

vagaries of programming language syntax or semantics.

• An effective mechanism for high-quality feedback: That is, the metric should provide a

software engineer with information that can lead to a higher quality end product.

5

9.4 METRICS FOR REQUIREMENT MODEL

Technical work in software engineering begins with the creation of the analysis

model. It is at this stage that requirements are derived and that a foundation for design is

established. Therefore, technical metrics that provide insight into the quality of the

analysis model are desirable. These metrics examine the analysis model with the intent of

predicting the size of the resultant system. It is likely that size and design complexity will

be directly correlated.

9.4.1 FUNCTION-BASED METRICS

Function point metrics provide a standardized method for measuring the various

functions of a software application. It measures the functionality from the user’s point of

view, that is, on the basis of what the user requests and receives in return. Function point

analysis is a standard method for measuring software development from the user's point of

view.

The function point metric can be used effectively as a means for predicting the size of a

system that will be derived from the analysis model. To illustrate the use of the FP metric,

we consider a simple requirement and analysis model representation. Figure 9.1 describes

a data flow diagram for a function within the SafeHome software. The function manages

user interaction, accepting a user password to activate or deactivate the system, and allows

inquiries on the status of security zones and various security sensors. The function displays

a series of prompting messages and sends appropriate control signals to various

components of the security system. The data flow diagram is evaluated to determine the

key measures required for computation of the function point metric:

• Number of user inputs

• Number of user outputs

• Number of user inquiries

• Number of files

• Number of external interfaces

6

FIGURE 9.1 Part of the requirement analysis model for SafeHome software

FIGURE 9.2 computing function points for a SafeHome function

Three user inputs—password, panic button, and activate/deactivate

Two inquires—zone inquiry and sensor inquiry.

One file - system configuration file.

Two user outputs - messages and sensor status and

Four external interfaces -test sensor, zone setting, activate/deactivate, and alarm alert.

The count total shown in Figure 9.2 must be adjusted using the below equation.

FP = count total x [0.65 + 0.01 x ∑(Fi)]

Where count total is the sum of all FP entries obtained from Figure 9.2 and Fi (i = 1 to 14) are

complexity adjustment values. For the purposes of this example, we assume that (Fi) is 46

7

(moderately complex product). Therefore,

FP = 50 x [0.65 + (0.01 x 46)] = 56

Based on the projected FP value derived from the analysis model, the project team can

estimate the overall implemented size of the SafeHome user interaction function. Assume that

past data indicates that one FP translates into 60 lines of code (an object oriented language is

to be used) and that 12 FPs are produced for each person-month of effort. These historical data

provide the project manager with important planning information that is based on the analysis

model rather than preliminary estimates. Assume further that past projects have found an

average of three errors per function point during analysis and design reviews and four errors

per function point during unit and integration testing. These data can help software engineers

assess the completeness of their review and testing activities.

9.4.2 THE BANG METRIC

Like the function point metric, the bang metric can be used to develop an indication of the size

of the software to be implemented as a consequence of the analysis model. Developed by

DeMarco, the bang metric is an implementation independent indication of system size.

To compute the bang metric, the software engineer must evaluate a set of primitives elements

of the analysis model that are not further subdivided at the analysis level. Primitive metrics are

determined by evaluating the analysis model and developing counts for the following forms:

Functional primitives (FuP): The number of transformations that appear at the lowest level

of a data flow diagram.

Data elements (DE): The number of attributes of a data object, data elements are not

composite data and appear within the data dictionary.

Objects (OB): The number of data objects.

Relationships (RE): The number of connections between data objects.

States (ST): The number of user observable states in the state transition diagram.

Transitions (TR): The number of state transitions in the state transition diagram.

In addition to these six primitives, additional counts are determined as follows,

Modified manual function primitives (FuPM): Functions, that lies outside the system

boundary. These functions are modified to accommodate the new system.

Input data elements (DEI): Those data elements that are input to the system.

Output data elements (DEO): Those data elements that are output from the system.

Retained data elements (DER): Data elements are retained (stored) by the system.

8

Data tokens (TCi): The data tokens (data items that are not subdivided within a functional

primitive) that exist at the boundary of the i
th

 functional primitive (evaluated for each

primitive).

Relationship connections (REi): The relationships that connect the i
th

object in the data

model to other objects.

Software can be allocated to one of two domains function strong or data strong, depending

upon the ratio RE/FuP. Function-strong applications are often encountered in engineering and

scientific applications emphasize the transformation of data and do not generally have

complex data structures. Data-strong applications are often encountered in information

systems applications tend to have complex data models.

RE/FuP < 0.7 implies a function-strong application.

0.8 < RE/FuP < 1.4 implies a hybrid application.

RE/FuP > 1.5 implies a data-strong application.

9.4.3 METRICS FOR SPECIFICATION QUALITY

Davis and his team propose a list of characteristics that can be used to assess the quality of the

analysis model and the corresponding requirements specification: specificity (lack of

ambiguity), completeness, correctness, understandability, verifiability, internal and external

consistency, achievability, concision, traceability, modifiability, precision, and reusability.

Each can be represented using one or more metrics. For instance, we assume that there are nr

requirements in a specification, using the following equation nr = nf + nnf where, nf is the

number of functional requirements and nnf is the number of non-functional (e.g., performance)

requirements.

To determine the specificity (lack of ambiguity) of requirements, a metric that is based on the

consistency of the reviewers’ interpretation of each requirement using the equation Q1 = nui/nr

where nui is the number of requirements for which all reviewers had identical interpretations.

The closer the value of Q to 1, the lower is the ambiguity of the specification.

The completeness of functional requirements can be determined by computing the ratio

Q2 = nu/[ni x ns] where, nu is the number of unique function requirements, ni is the number of

inputs (stimuli) defined or implied by the specification, and ns is the number of states

specified. The Q2 ratio measures the percentage of necessary functions that have been

specified for a system. However, it does not address nonfunctional requirements. To

incorporate these into an overall metric for completeness, we must consider the degree to

9

which requirements have been validated with Q3 = nc/[nc + nnv] where nc is the number of

requirements that have been validated as correct and nnv is the number of requirements that

have not yet been validated.

9.5 METRICS FOR DESIGN MODEL

Metrics simply measures quantitative assessment that focuses on countable values most

commonly used for comparing and tracking performance of system. Metrics are used in different

scenarios like analyzing model, design model, source code, testing, and maintenance. Metrics

for design modeling allows developers or software engineers to evaluate or estimate quality of

design and include various architecture and component-level designs.

9.5.1 ARCHITECTURAL DESIGN METRICS

Architectural design metrics focus on characteristics of the program architecture with an

emphasis on the architectural structure and the effectiveness of modules. These metrics are black

box in the sense that they do not require any knowledge of the inner workings of a particular

software component.

Metrics by Glass and Card:

In designing a product, it is very important to have efficient management of complexity. Glass

and Card are two scientists who have suggested three design complexity measures.

These are describes are follows,

Structural Complexity –

Structural complexity depends upon fan-out for modules. It can be defined by, S(k) = f
2
out(k)

Where fout represents fanout for module k (fan-out means number of modules that are

subordinating module k).

Data Complexity –

Data complexity is complexity within interface of internal module. It is size and intricacy of

data. For some module k, it can be defined as D(k) = tot_var(k) / [fout(k)+1] where tot_var is

total number of input and output variables going to and coming out of module.

System Complexity –

System complexity is combination of structural and data complexity. It can be denoted as

10

Sy(k) = S(k)+D(k). When, structural data and system complexity get increased then overall

architectural complexity also gets increased.

Complexity metrics –

Complexity metrics are used to measure complexity of overall software. The computation of

complexity metrics can be done with help of a flow graph. It is sometimes called cyclomatic

complexity. The cyclomatic complexity is a useful metric to indicate complexity of software

system. Without use of complexity metrics, it is very hard and time-consuming to determine

complexity in designing products where risk cost emanates. Even continuous complexity

analysis makes it difficult for project team and management to solve problem. Measuring

Software complexity leads to improve code quality, increase productivity, meet architectural

standards, reduce overall cost, increases robustness, etc. To calculate cyclomatic complexity,

following equation: Cyclomatic complexity= E - N + 2 where, E is the total number of edges

and N is total number of nodes.

FIGURE 9.3: Flow chart and flow graph for the example code

For example, in the figure 9.3, we can observe the number of edges and number of nodes.

So, the Cyclomatic complexity can be calculated as –

11

Given,

E = 10, N = 8

So,

Cyclomatic complexity = E - N + 2

 = 10 – 8 + 2

 = 4

9.5.2 COMPONENT-LEVEL DESIGN METRICS

Component-level design metrics focus on internal characteristics of a software component and

include measures of the ―three Cs‖—module cohesion, coupling, and complexity. These

measures can help a software engineer to judge the quality of a component-level design.

COHESION METRICS

Cohesion metrics define a collection of metrics that provide an indication of the cohesiveness

of a module. The metrics are defined in terms of five concepts and measures:

 Data slice: A data slice is a backward walk through a module that looks for data values

that affect the module location at which the walk began. It should be noted that both

program slices (which focus on statements and conditions) and data slices can be

defined.

 Data tokens: The variables defined for a module can be defined as data tokens for the

module.

 Glue tokens: This set of data tokens lies on one or more data slice.

 Superglue tokens: These data tokens are common to every data slice in a module.

 Stickiness: The relative stickiness of glue token is directly proportional to the number of

data slices that it binds.

All the above cohesion metrics range in value between 0 and 1.

COUPLING METRICS

Module coupling provides an indication of the connectedness of a module to other modules,

global data, and the outside environment.

For data and control flow coupling,

di = number of input data parameters

ci = number of input control parameters

do = number of output data parameters

co = number of output control parameters

12

For global coupling,

gd = number of global variables used as data

gc = number of global variables used as control

For environmental coupling,

w = number of modules called (fan-out)

r = number of modules calling the module under consideration (fan-in)

Using these measures, a module coupling indicator, mc, is defined in the following way:

mc = k/M where k = 1, a proportionality constant 8 and

M = di + (a x ci) + do + (b x co) + gd + (c x gc) + w + r where a = b = c = 2.

The higher the value of mc, the lower is the overall module coupling.

COMPLEXITY METRICS

A variety of software metrics can be computed to determine the complexity of program control

flow. Many of these are based on the flow graph. A graph is a representation composed of nodes

and links (also called edges). When the links (edges) are directed, the flow graph is a directed

graph. Complexity metrics can be used to predict critical information about reliability and

maintainability of software systems from automatic analysis of source code. Complexity metrics

also provide feedback during the software project to help and control the design activity. During

testing and maintenance, they provide detailed information about software modules to help

pinpoint areas of potential instability.

9.5.3 INTERFACE DESIGN METRICS

A typical GUI uses layout entities—graphic icons, text, menus, windows, and the like—to assist

the user in completing tasks. To accomplish a given task using a GUI, the user must move from

one layout entity to the next. The absolute and relative position of each layout entity, the

frequency with which it is used, and the ―cost‖ of the transition from one layout entity to the

next all contribute to the appropriateness of the interface.

9.6 DEIGN METRICS FOR WEBAPP

The web page metrics are used in measuring various attributes of any website

effectively. There are various measures or metrics that can be measured in web testing like

finding the audience page views, pages per session, devices they are using, types of traffics

like direct, indirect, organic, search, and also site content or site speed, etc.

13

Measures of web metrics: There are a lot of things that you can measure for growing your

website or a business so that there can be more traffic or users available on your website.

Some of the best examples that you can measure in your website using the tools available in

the market are given below:

Site Traffic: This is the most common metric that every developer or businessman checks for

its website growth. It gives us a good indication of your website if it is growing, or declining.

It also shows you the various traffic sources like unique visitors or repeats visitors, etc.

Bounce Rate: This is also another important metric when monitoring your website for

success. The bounce rate tells you the percentage of visitors who leave your website

immediately after clicking on it or after arriving. So, thus it means that if the site has less

bounce rate then there will be a great growth of the site otherwise the site is not at a good

performance.

Session Duration: The session duration tells us about how much time a user was active on

the website. If your website gets a higher number of clicks, then the session duration will also

be higher. As per Google Analytics, if the user is inactive on the website for 30 minutes, it

assumes that the session is closed.

Site Speed: This metric helps the user to see how much time a page is taking to load. It is

calculated as the average page load time.

Page views: This metric show which page of your website has more traffic or more views. If

you have the idea that which content of your page is most liked by the user, then you can

improve or add more content like that so that you can have more traffic.

Conversion Rate: This metric is calculated as the number of conversions divided by the total

number of visitors. It is a very important topic for those that have a sales website as if they

know about the conversion rate of their website, then they can increase their sales profit

through this metric. For example, if the site has 100 unique users and has sales of 25 users,

then the conversion rate will be 25/100 = 25%.

Devices Sources: This metric shows the type of devices (PC, Mobile, Tablet, etc) a user is

opening the website. It can help you in optimizing the website for each device or the

operating systems they are using.

9.6.1 TYPES OF TRAFFIC SOURCES:

We know that website traffic is the most essential metric that every person checks who has a

website as it shows how successful the website is. The traffic sources are divided into 4

14

categories:

Organic Traffic: It is a type of traffic that comes from various search engines that a user has

searched for. This traffic is the most natural source that a website has earned. It can be

increased by applying a technique called Search Engine Optimization (SEO).

Direct traffic: It is a type of traffic in which the user directly comes either by direct the full

URL or by searching the website name. This traffic consists of the regular visitors of your

site.

Social traffic: It is a type of traffic that comes from various traffic sources like Facebook,

WhatsApp, Instagram, Twitter, etc.

Referral traffic: It is a type of traffic that comes when your website is linked with some

other website or comes if the website link is attached to a blog post or any other method as a

means of referral.

There are three types of metrics used in testing a website. They are:

1. Page composition metrics: The composition of a page consists of the arrangement of all

visual elements on a webpage like links, words, percentage related to how much size does the

page consuming, etc. Some of the common metrics for measuring the various attributes in a

page are shown below with their description.

i. Number of words Checks the total words on a page

ii. Body text words Checks the words that are body Vs. display text

iii. Embedded links Checks the links embedded in text on a page

iv. Readability Checks the reading level of text on a page

v. Navigation percentage Checks the total portion of a page given to navigation

vi. Page size Checks the total bytes for the page and images

vii. Animated elements Checks the animated images and scrolling text

viii. Length of link text Checks the words in the text for a link

2. Page formatting metrics: There are various metrics that need to be tested in a webpage

as it defines how well a website is formatted and how many styles, colors, tables, or screens

are used in the website. Some of the common page formatting metrics are shown below with

their description.

i. Font styles Checks the type of fonts used

ii. Types of fonts Checks the total emphasized text

iii. Number of font sizes Checks the total font sizes employed

iv. Text clustering Checks the text areas highlighted with the color

15

v. Number of colors Checks the total colors employed

vi. Frames Use of frames

vii. Number of tables Checks the total tables added on a web page

viii. Number of screens Checks the total scrolls required on the screens

3. Page Quality or Assessment Metrics: For measuring the quality of any website or to

assess a website, we have to check various things that include the links quality, the speed of

loading and downloading, the quality of the images on different browsers, etc. Some of the

common metrics are shown below with their description.

i. Information quality Content appropriateness like tone, etc.

ii. Link quality Checks the relevance of the links.

iii. Layout quality Checks the alignment and balance.

iv. Download speed Checks the time needed for a page to fully load.

v. Image quality Checks the image appropriateness, size, and resolution.

9.6.2 BENEFITS OF WEB METRICS:

 The metrics help us in determining the direction

 It also creates a focal point

 It helps in making small or large decisions

 It determines the website performance

 It also provides real-time user data

9.6.3 POPULAR TOOLS FOR MEASURING WEB METRICS:

Some of the most popular tools used in measuring the web-metrics are given below:

 Google Analytics

 Adobe Analytics

 Baidu Analytics

 StatCounter

 Ahrefs

9.7 METRICS FOR SOURCE CODE

Halstead's theory of software science is one of the best known and most thoroughly

studied composite measures of (software) complexity. Software science proposed the first

analytical laws for computer software. Software science assigns quantitative laws to the

16

development of computer software, using a set of primitive measures that may be derived after

code is generated or estimated once design is complete.

These follow:

n1 = the number of distinct operators that appear in a program.

n2 = the number of distinct operands that appear in a program.

N1 = the total number of operator occurrences.

N2 = the total number of operand occurrences.

Halstead uses these primitive measures to develop expressions for the overall program length,

potential minimum volume for an algorithm, the actual volume (number of bits required to

specify a program), the program level (a measure of software complexity), the language level (a

constant for a given language), and other features such as development effort, development time,

and even the projected number of faults in the software.

Halstead shows that length N can be estimated using N = n1* log2 n1 + n2 * log2 n2 and

program volume may be defined V = N* log2 (n1 + n2). It should be noted that V will vary with

programming language and represents the volume of information (in bits) required to specify a

program.

Theoretically, a minimum volume must exist for a particular algorithm. Halstead defines a

volume ratio L as the ratio of volume of the most compact form of a program to the volume of

the actual program. In actuality, L must always be less than 1.

In terms of primitive measures, the volume ratio may be expressed as.

L = 2/n1 x n2/N2

Halstead's work is amenable to experimental verification.

9.8 METRICS FOR TESTING

Testers must rely on analysis, design, and code metrics to guide them in the design and

execution of test cases.

Function-based metrics can be used as a predictor for overall testing effort. Various project-level

characteristics like testing effort and time, errors uncovered, number of test cases produced for

past projects can be collected and correlated with the number of FP produced by a project team.

The team can then project expected value of these characteristics for the current project.

17

The bang metric can provide an indication of the number of test cases required by examining the

primitive measures discussed in earlier section. The number of functional primitives (FuP), data

elements (DE), objects (OB), relationships (RE), states (ST), and transitions (TR) can be used to

project the number and types of black-box and white-box tests for the software. For example, the

number of tests associated with the human/computer interface can be estimated by

(1) Examining the number of transitions (TR) contained in the state transition representation

of the HCI and evaluating the tests required to exercise each transition;

(2) Examining the number of data objects (OB) that move across the interface, and

(3) The number of data elements that are input or output.

Architectural design metrics provide information on the ease or difficulty associated with

integration testing and the need for specialized testing software (e.g., stubs and drivers).

Cyclomatic complexity (a component-level design metric) lies at the core of basis path testing.

In addition, cyclomatic complexity can be used to target modules as candidates for extensive

unit testing. Modules with high cyclomatic complexity are more likely to be error prone than

modules whose cyclomatic complexity is lower. For this reason, the tester should expend above

average effort to uncover errors in such modules before they are integrated in a system. Testing

effort can also be estimated using metrics derived from Halstead measures. Using the definitions

for program volume, V, and program level, PL, software science effort, e, can be computed as

PL = 1/[(n1/2)•(N2/n2)]

e = V/PL

Testing metrics fall into two broad categories:

(1) Metrics that attempt to predict the likely number of tests required at various testing

levels and

(2) Metrics that focus on test coverage for a given component.

The percentage of overall testing effort to be allocated to a module k can be estimated using the

following relationship:

Percentage of testing effort (k) = e(k)/ ∑e(i) where e(k) is computed for module k using the

above equation and the summation is the sum of software science effort across all modules of

the system.

As test cases are conducted, three different measures provide an indication of testing

completeness. A measure of the breath of testing provides an indication of how many

requirements (of the total number of requirements) have been tested. This provides an indication

18

of the completeness of the test plan. Depth of testing is a measure of the percentage of

independent basis paths covered by testing versus the total number of basis paths in the program.

A reasonably accurate estimate of the number of basis paths can be computed by adding the

cyclomatic complexity of all program modules. Finally, as tests are conducted and error data are

collected, fault profiles may be used to rank and categorize errors uncovered. Priority indicates

the severity of the problem. Fault categories provide a description of an error so that statistical

error analysis can be conducted.

9.9 METRICS FOR MAINTENANCE

All of the software metrics introduced in this unit can be used for the development of

new software and the maintenance of existing software. However, metrics designed explicitly

for maintenance activities have been proposed. A Software Maturity Index (SMI) that provides

an indication of the stability of a software product (based on changes that occur for each release

of the product). The following information is determined:

MT = the number of modules in the current release

Fc = the number of modules in the current release that have been changed

Fa = the number of modules in the current release that have been added

Fd = the number of modules from the preceding release that were deleted in the current release.

The software maturity index is computed in the following manner:

SMI = [MT (Fa + Fc + Fd)]/MT

SMI may also be used as metric for planning software maintenance activities. The mean time to

produce a release of a software product can be correlated with SMI and empirical models for

maintenance effort can be developed.

9.10 CHECK YOUR PROGRESS

1. Product metrics that are computed from data collected from.

(a) The requirements and design models

(b) Source code

(c) Test cases

(d) All of the mentioned above

2. ------------------------ provide information on the ease or difficulty associated with

integration testing.

(a) Product metrics

19

(b) Work products

(c) Architectural design metrics

(d) All of the mentioned above

3. ------------------------ metric can be used effectively as a means for measuring the

functionality delivered by a system.

(a) Function point

(b) Product metric

(c) Both a and b

(d) None of the mentioned above

4. Software engineers use ----------------- to help them build higher quality software.

(a) Measurable attributes

(b) Work products

(c) Product metrics

(d) All the mentioned above

5. Architectural Design Metrics are -------------------- in nature.

(a) Black Box

(b) White Box

(c) Gray Box

(d) Green Box

6. Which of the following metric does not depend on the programming language used?

(A) Line of code

(B) Function count

(C) Member of token

(D) All of the above

7. While estimating the cost of software, Lines of Code (LOC) and Function Points (FP) are

used to measure which one of the following?

(A) Length of code

(B) Size of software

(C) Functionality of software

(D) None of the above

8. SMI stands for.

(a) Software mature Indicator

(b) Software Maturity Index

(c) Software Mature Index

20

(d) Software maturity Indicator

9. Measurement assigns numbers or symbols to attributes of entities in the real world?

True/ False.

10. Cyclomatic complexity can be calculated using --------------------

11. Define software metrics.

Answers to check your progress:

1. All of the mentioned above

2. Architectural design metrics

3. Function point

4. Product metrics

5. Black Box

6. Function count

7. Size of software

8. Software Maturity Index

9. True

10. Cyclomatic complexity= E - N + 2

11. Software metric is a characteristic of a software system, system documentation, or

development process that can be objectively measured.

9.11 SUMMARY

 Software metrics provide a quantitative way to assess the quality of internal product

attributes, thereby enabling the software engineer to assess quality before the product is built.

Metrics provide the insight necessary to create effective analysis and design models, solid

code, and thorough tests. To be useful in a real world context, software metric must be simple

and computable, persuasive, consistent, and objective. It should be programming language

independent and provide effective feedback to the software engineer.

Metrics for the requirement analysis model focus on function, data, and behavior, the three

components of the analysis model. The function point and the bang metric each provide a

quantitative means for evaluating the analysis model. Metrics for design consider

architecture, component-level design, and interface design issues. Architectural design

metrics consider the structural aspects of the design model. Component-level design metrics

provide an indication of module quality by establishing indirect measures for cohesion,

21

coupling, and complexity. Interface design metrics provide an indication of layout

appropriateness for a GUI. Software science provides an intriguing set of metrics at the

source code level. Using the number of operators and operands present in the code, software

science provides a variety of metrics that can be used to assess program quality. Few

technical metrics have been proposed for direct use in software testing and maintenance.

However, many other technical metrics can be used to guide the testing process and as a

mechanism for assessing the maintainability of a computer program.

9.12 KEYWORDS

 Software metric- is a characteristic of a software system, system documentation, or

development process that can be objectively measured.

 Product metrics- are software product measures at any stage of their development,

from requirements to established systems.

 Fan-out- means number of modules that are subordinating module (say k).

 Cohesion metrics- is a collection of metrics that provide an indication of the cohesiveness

of a module.

 Data tokens- are the variables defined for a module.

 Superglue tokens- are common data tokens to every data slice in a module.

 Bounce rate- is the percentage of visitors who leave your website immediately after

clicking on it or after arriving.

9.13 QUESTIONS FOR SELF STUDY

1. What is software metrics? Explain its classification.

2. What are the challenges of technical metrics?

3. What are the activities of measurement process?

4. Explain the attributes of effective software metrics.

5. Define the following terms: (a) Product metrics (b) Glue token (C) Superglue token (d)

Organic traffic (e) Direct traffic (f) Referral traffic (g) Bounce rate

6. What are functions based metrics? Explain.

7. Give a brief explanation on the metrics of design.

8. List the benefits of web metrics.

9. What are the different types of metrics used in testing a website? Explain.

22

10. Describe metrics for testing.

9.14 REFERENCES

1. Software Engineering, A Practitioner’s Approach – 7th Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering: Pearson New International Edition – Ian Sommerville, 2013.

23

STRUCTURE

10.0 Objectives

10.1 Introduction

10.2 User Interface design activities

10.3 User interface process and analysis

10.4 Golden rules

10.5 Interface analysis

10.6 Interface design steps

10.7 WebApp interface design

10.8 Design evaluation

10.9 Check your progress

10.10 Summary

10.11 Key words

10.12 Questions for self-study

10.13 References

10.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand the importance of user interface

 Know the types of Interfaces

 Identify the Steps of User Interface Design and analysis

 Gain the knowledge about WebApp interface development

 Able to evaluate the design process

10.1 INTRODUCTION

 In this unit, we are going to discuss about user interface design. The user interface is

arguably the most important element of a computer-based system or product. If the interface

is poorly designed, the user’s ability to tap the computational power of an application may be

severely hindered. In fact, a weak interface may cause to fail the well designed and

implemented application.

UNIT-10: USER – INTERFACE DESIGN

24

10.2 INTRODUCTION TO USER INTERFACE

User Interface (UI) is the front-end application view to which user interacts in order to use

the software. User can manipulate and control the software as well as hardware by means of

user interface. Today, user interface is found at almost every place where digital technology

exists, right from computers, mobile phones, cars, music players, airplanes, ships etc. UI

provides fundamental platform for human-computer interaction. UI can be graphical, text-

based, audio-video based, depending upon the underlying hardware and software

combination. UI can be hardware or software or a combination of both. The software

becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interface screens

User interface is broadly classified into two categories:

1. Command Line Interface (CLI)

2. Graphical User Interface (GUI)

Command Line Interface: Command Line Interface provides a command prompt, where the

user types the command and feeds to the system. The user needs to remember the syntax of

the command and its use. A command is a text-based reference to the set of instructions,

which are expected to be executed by the system. There are methods like macros, scripts that

made it easy for the user to operate. CLI uses less amount of computer resource as compared

to GUI.

Graphical User Interface: Graphical User Interface provides the simple interactive interface

to interact with the system. GUI can be a combination of both hardware and software. Using

GUI, user interprets the software. GUI is more resource consuming when compared to CLI.

With advance technology, the programmers and designers create complex GUI designs that

work with more efficiency, accuracy and speed.

25

10.3 USER INTERFACE DESIGN ACTIVITIES

There are a number of activities to be performed while designing user interface. The process

of GUI design and implementation is alike SDLC. Any model can be used for GUI

implementation like Waterfall, Iterative or Spiral Model. Figure 10.1 shows the phased

involved in GUI design.

Figure 10.1 Phases of user interface design

 GUI Requirement Gathering - The designers wish to have list of all functional and non-

functional requirements of GUI. This can be collected from user and the existing software

solution.

 User Analysis - The designer study about the user, who is going to use the software GUI.

The target audience matters, as the design details change according to the knowledge and

competency level of the user. If user is technical savvy, advanced and complex GUI can

be incorporated. For a novice user, more information is included on how-to of software.

 Task Analysis - Designers have to analyze what task is to be done by the software

solution. Here in GUI, it does not matter how it will be done. Tasks can be represented in

hierarchical manner taking one major task and dividing it further into smaller sub-tasks.

Tasks provide goals for GUI presentation. Flow of information among sub-tasks

determines the flow of GUI contents in the software.

 GUI Design & implementation - After having information about requirements, tasks and

user environment, designers start to design the GUI and implements into code and embed

the GUI with working or dummy software in the background. It is then self-tested by the

developers.

 Testing - GUI testing can be done in many ways. Organization can have in-house

26

inspection, direct involvement of users and release of beta version are few of them.

Testing may include usability, compatibility, user acceptance etc.

10.4 USER INTERFACE DESIGN PROCESS AND ANALYSIS

The overall process for analyzing and designing a user interface begins with the creation of

different models of system function (as perceived from the outside). Tools are used to

prototype and ultimately implement the design model, and the result is evaluated by end users

for quality.

Four different models come into play when a user interface is to be analyzed and designed.

 A human engineer (or the software engineer) establishes a user model,

 The software engineer creates a design model,

 The end user develops a mental image that is often called the user’s mental model or

the system perception,

 The implementers of the system create an implementation model.

The user model establishes the profile of end users of the system.

To build an effective user interface- all design should begin with an understanding of the

intended users, including profiles of their age, gender, physical abilities, education, cultural

or ethnic background, motivation, goals and personalities. In addition, users can be

categorized as:

a) Novices- No syntactic knowledge of the system and little semantic knowledge of the

application or computer usage in general.

b) Knowledgeable, intermittent users- Reasonable semantic knowledge of the application

but relatively low recall of syntactic information necessary to use the interface.

c) Knowledgeable, frequent users- Good semantic and syntactic knowledge that often leads

to the ―power-user syndrome‖; that is, individuals who look for shortcuts and abbreviated

modes of interaction.

The user’s mental model (system perception): is the image of the system that end users

carry in their heads. A user who understands word processors fully but has worked with the

specific word processor only once might actually be able to provide a more complete

description of its function than the novice who has spent weeks trying to learn the system.

The implementation model: combines the outward manifestation of the computer-based

27

system (the look and feel of the interface), coupled with all supporting information (books,

manuals, videotapes, help files) that describes interface syntax and semantics. When the

implementation model and the user’s mental model are coincident, users generally feel

comfortable with the software and use it effectively. To accomplish this ―melding‖ of the

models, the design model must have been developed to accommodate the information

contained in the user model, and the implementation model must accurately reflect syntactic

and semantic information about the interface.

The analysis and design process of a user interface is iterative and can be represented by a

spiral model. The analysis and design process of user interface consists of four framework

activities. Figure 10.2 shows the frame work activities.

Figure 10.2 User interface framework

User, task, environmental analysis, and modeling: Initially, the focus is based on the

profile of users, who will interact with the system, i.e. understanding, skill and knowledge,

type of user, etc. Based on the user’s profile users are made into categories. From each

category requirements are gathered. Depending on the requirements developer understands

how to develop the interface. Once all the requirements are gathered a detailed analysis is

conducted. In the analysis part, the tasks that the user performs to establish the goals of the

system are identified, described and elaborated. The analysis of the user environment focuses

on the physical work environment. Among the questions to be asked are:

 Where will the interface be located physically?

 Will the user be sitting, standing, or performing other tasks unrelated to the interface?

 Does the interface hardware accommodate space, light, or noise constraints?

 Are there special human factors considerations driven by environmental factors?

28

Interface Design: The goal of this phase is to define the set of interface objects and actions

i.e. Control mechanisms that enable the user to perform desired tasks. Indicate how these

control mechanisms affect the system. Specify the action sequence of tasks and subtasks, also

called a user scenario. Indicate the state of the system when the user performs a particular

task. Always follow the three golden rules stated by Theo Mandel. Design issues such as

response time, command and action structure, error handling, and help facilities are

considered as the design model is refined. This phase serves as the foundation for the

implementation phase.

Interface construction and implementation: The implementation activity begins with the

creation of prototype model that enables usage scenarios to be evaluated. As iterative design

process continues a User Interface toolkit that allows the creation of windows, menus, device

interaction, error messages, commands, and many other elements of an interactive

environment can be used for completing the construction of an interface.

Interface Validation: This phase focuses on testing the interface. The interface should be in

such a way that it should be able to perform tasks correctly and it should be able to handle a

variety of tasks. It should achieve all the user’s requirements. It should be easy to use and

learn. Users should accept the interface as a useful one in their work.

10.5 GOLDEN RULES

The following are the golden rules stated by Theo Mandel that must be followed during the

design of the interface.

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent

Place the user in control:

 Define the interaction modes: In such a way that does not force the user into

unnecessary or undesired actions: The user should be able to easily enter and exit the

mode with little or no effort.

 Provide for flexible interaction: Different people will use different interaction

mechanisms, some might use keyboard commands, some might use mouse, some

might use touch screen, etc., and hence all interaction mechanisms should be

provided.

29

 Allow user interaction to be interruptible and undoable: When a user is doing a

sequence of actions the user must be able to interrupt the sequence to do some other

work without losing the work that had been done. The user should also be able to do

undo operation.

 Streamline interaction as skill level advances and allow the interaction to be

customized: Advanced or highly skilled user should be provided a chance to

customize the interface as user wants which allows different interaction mechanisms

so that user doesn’t feel bored while using the same interaction mechanism.

 Hide technical internals from casual users: The user should not be aware of the

internal technical details of the system. He should interact with the interface just to do

his work.

 Design for direct interaction with objects that appear on screen: The user should be

able to use the objects and manipulate the objects that are present on the screen to

perform a necessary task. By this, the user feels easy to control over the screen.

Reduce the user’s memory load:

 Reduce demand on short-term memory: Design of short-term memory is significant

when users are involved in complex tasks. So the interface should be designed in a

way to reduce the remembering of previously done actions, given inputs and results.

 Establish meaningful defaults: Always initial set of defaults should be provided to the

average user, if a user needs to add some new features then he should be able to add

the required features.

 Define shortcuts that are intuitive: Mnemonics should be used by the user.

Mnemonics means the keyboard shortcuts to do some action on the screen.

 The visual layout of the interface should be based on a real-world metaphor:

Anything you represent on a screen if it is a metaphor for real-world entity then users

would easily understand.

 Disclose information in a progressive fashion: The interface should be organized

hierarchically i.e. on the main screen the information about the task, an object or some

behavior should be presented first at a high level of abstraction. More detail should be

presented after the user indicates interest with a mouse pick.

Make the interface consistent:

 Allow the user to put the current task into a meaningful context: Many interfaces have

dozens of screens. So it is important to provide indicators consistently so that the user

30

know about the doing work. The user should also know from which page has

navigated to the current page and from the current page where can navigate.

 Maintain consistency across a family of applications: The development of some set of

applications all should follow and implement the same design, rules so that

consistency is maintained among applications.

 If past interactive models have created user expectations do not make changes unless

there is a compelling reason.

10.6 INTERFACE ANALYSIS

A key tenet of all software engineering process models is to understand the problem before

attempting to design a solution. In the case of user interface design, understanding the

problem means understanding

(1) the people (end users) who will interact with the system through the interface

(2) the tasks that end users must perform to do their work

(3) the content that is presented as part of the interface and

(4) the environment in which these tasks will be conducted.

10.6.1 USER ANALYSIS

To get the mental image and the design model to converge is to work to understand the users

themselves as well as how these people will use the system. Information from a broad array

of sources can be used to accomplish this:

User Interviews: The most direct approach, members of the software team meet with end

users to better understand their needs, motivations, work culture, and a myriad of other

issues. This can be accomplished in one-on-one meetings or through focus groups.

Sales input: Sales people meet with users on a regular basis and can gather information that

will help the software team to categorize users and better understand their requirements.

Marketing input: Market analysis can be invaluable in the definition of market segments

and an understanding of how each segment might use the software in subtly different ways.

Support input: Support staff talks with users on a daily basis. They are the most likely

source of information on what works and what doesn’t, what users like and what they dislike,

what features generate questions and what features are easy to use.

The following set of questions will help you to better understand the users of a system:

31

• Are users trained professionals, technicians, clerical, or manufacturing workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they expressed a desire for

classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

10.6.2 USER ANALYSIS

The goal of task analysis is to answer the following questions:

 • What work will the user perform in specific circumstances?

• What tasks and subtasks will be performed as the user does the work?

• What specific problem domain objects will the user manipulate as work is performed?

• What is the sequence of work tasks—the workflow?

 • What is the hierarchy of tasks?

Use case: When used as part of task analysis, the use case is developed to show how an end

user performs some specific work-related task. In most instances, the use case is written in an

informal style (a simple paragraph) in the first-person. This use case provides a basic

description of one important work task for the computer-aided design system. From it, you

can extract tasks, objects, and the overall flow of the interaction.

Task elaboration: Task analysis for interface design uses an elaborative approach to assist in

understanding the human activities the user interface must accommodate. To understand the

tasks that must be performed to accomplish the goal of the activity, one should must

understand the tasks that people currently perform (when using a manual approach) and then

map these into a similar (but not necessarily identical) set of tasks that are implemented in the

context of the user interface. Alternatively, one can study an existing specification for a

computer-based solution and derive a set of user tasks that will accommodate the user model,

the design model, and the system perception. Regardless of the overall approach to task

analysis, one must first define and classify tasks.

Object elaboration: Instead of focusing on the tasks that a user must perform, one can

examine the use case and other information obtained from the user and extract the meaningful

objects. These objects can be categorized into classes. Attributes of each class are defined,

32

and an evaluation of the actions applied to each object provide a list of operations.

Workflow analysis: This technique allows you to understand how a work process is

completed when several people (and roles) are involved.

Hierarchical representation: A process of elaboration occurs as you begin to analyze the

interface. Once workflow has been established, a task hierarchy can be defined for each user

type. each task identified for the user.

10.6.3 ANALYSIS OF THE DISPLAY CONTENT

For modern applications, display content can range from character-based reports (e.g., a

spreadsheet), graphical displays (e.g., a histogram, a 3-D model, a picture of a person), or

specialized information (e.g., audio or video files). The analysis modeling techniques identify

the output data objects that are produced by an application. These data objects may be

(1) generated by components (unrelated to the interface) in other parts of an

application,

(2) acquired from data stored in a database that is accessible from the application, or

(3) transmitted from systems external to the application in question

10.6.4 ANALYSIS OF THE WORK ENVIRONMENT

In some applications the user interface for a computer-based system is placed in a ―user-

friendly location‖ (e.g., proper lighting, good display height, easy keyboard access), but in

others (e.g., a factory floor or an airplane cockpit), lighting may be suboptimal, noise may be

a factor, a keyboard or mouse may not be an option, display placement may be less than

ideal. The interface designer may be constrained by factors that mitigate against ease of use.

In addition to physical environmental factors, the workplace culture also comes into play.

Will system interaction be measured in some manner (e.g., time per transaction or accuracy

of a transaction)? Will two or more people have to share information before an input can be

provided? How will support be provided to users of the system? These and many related

questions should be answered before the interface design commences.

10.7 INTERFACE DESIGN STEPS

Once interface analysis has been completed, all tasks (or objects and actions) required

by the end user have been identified in detail and the interface design activity commences.

Interface design, like all software engineering design, is an iterative process.

33

The combination of the following steps are used for interface design models:

1. Using information developed during interface analysis, define interface objects and actions

(operations).

2. Define events (user actions) that will cause the state of the user interface to change. Model

this behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information provided through

the interface.

10.7.1 APPLYING INTERFACE DESIGN STEPS

The definition of interface objects and the actions that are applied to them is an important

step in interface design. To accomplish this, user scenarios are parsed. That is, a use case is

written.

Once the objects and actions have been defined and elaborated iteratively, they are

categorized by type. Target, source, and application objects are identified. A source object

(e.g., a report icon) is dragged and dropped onto a target object (e.g., a printer icon). The

implication of this action is to create a hard-copy report. An application object represents

application-specific data that are not directly manipulated as part of screen interaction.

10.8 WEBAPP INTERFACE DESIGN

The user interface of a WebApp is its first impression. Regardless of the value of its

content, the sophistication of its processing capabilities and services, and the overall benefit

of the WebApp itself a poorly designed interface will disappoint the potential user. Because

of the sheer volume of competing WebApps in virtually every subject area, the interface must

grab a potential user immediately. Nielsen and Wagner suggest a few simple guide lines

based on their redesign of a major WebApp:

 Server errors, even minor ones, are likely to cause a user to leave the Web site and

look elsewhere for information or services.

 Reading speed on a computer monitor is approximately 25 percent slower than

reading speed for hard copy. Therefore, do not force the user to read voluminous

amounts of text, particularly when the text explains the operation of the WebApp or

assists in navigation.

 Avoid under construction signs—they raise expectations and cause an unnecessary

link that is sure to disappoint.

34

 Users prefer not to scroll. Important information should be placed within the

dimensions of a typical browser window.

 Navigation menus and head bars should be designed consistently and should be

available on all pages that are available to the user. The design should not rely on

browser functions to assist in navigation.

 Aesthetics should never supersede functionality. For example, a simple button might

be a better navigation option than an aesthetically pleasing, but vague image or icon

whose intent is unclear.

 Navigation options should be obvious, even to the casual user. The user should not

have to search the screen to determine how to link to other content or services.

A well-designed interface improves the user’s perception of the content or services provided

by the site. It need not be flashy, but it should always be well structured and ergonomically

sound.

10.9 DESIGN EVALUATION

Once an operational user interface prototype has been created, it must be evaluated to

determine whether it meets the needs of the user. Evaluation can span a formality spectrum

that ranges from an informal test drive, in which a user provides vamped feedback to a

formally designed study that uses statistical methods for the evaluation of questionnaires

completed by a population of end-users.

The user interface evaluation cycle takes the form shown in Figure 10.3. After the design

model has been completed, a first-level prototype is created. The prototype is evaluated by

the user, who provides the designer with direct comments about the efficacy of the interface.

In addition, if formal evaluation techniques are used like questionnaires, rating sheets, the

designer may extract information from these data.

Design modifications are made based on user input and the next level prototype is created.

The evaluation cycle continues until no further modifications to the interface design are

necessary.

35

Fig 10.3 The interface design evaluation cycle

The prototyping approach is effective, if potential problems can be uncovered and corrected

early, the number of loops through the evaluation cycle will be reduced and development

time will shorten. If a design model of the interface has been created, a number of evaluation

criteria can be applied during early design reviews:

1. The length and complexity of the written specification of the system and its interface

provide an indication of the amount of learning required by users of the system.

2. The number of user tasks specified and the average number of actions per task

provide an indication of interaction time and the overall efficiency of the system.

3. The number of actions, tasks, and system states indicated by the design model imply

the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general

indication of the complexity of the interface and the degree to which it will be

accepted by the user.

36

Once the first prototype is built, the designer can collect a variety of qualitative and

quantitative data that will assist in evaluating the interface. To collect qualitative data,

questionnaires can be distributed to users of the prototype. Questions can be all (1) simple

yes/no response, (2) numeric response, (3) Scale or subjective response, or (4) percentage or

subjective response.

Examples are:

1. Were the icons self-explanatory? If not, which icons were unclear?

2. Were the actions easy to remember and to invoke?

3. How many different actions did you use?

4. How easy was it to learn basic system operations (scale 1 to 5)?

5. Compared to other interfaces you've used, how would this rate—top 1%, top 10%, top

25%, top 50%, bottom 50%?

If quantitative data are desired, a form of time study analysis can be conducted. Users are

observed during interaction, and data—such as number of tasks correctly completed over a

standard time period, frequency of actions, sequence of actions, time spent looking at the

display, number and types of errors, error recovery time, time spent using help, and number

of help references per standard time period—are collected and used as a guide for interface

modification.

10.10 CHECK YOUR PROGRESS

1. Categories of user interface design are ______________ and ___________.

2. The prototype is evaluated by ____________________.

3. Design evaluation is studied by ______________

4. After the first prototype was built, the designer collects ______________ and

____________ data that will assist to evaluate interface.

5. The qualitative data ____________ can be distributed to the user.

6. ____________ is the front-end application view to which user interacts in order to use

the software.

Answers to check your progress:

1. Command Line Interface and Graphical User Interface

2. User

3. Designer

37

4. Qualitative and quantitative

5. Questionnaires

6. Use interface design

10.11 SUMMARY

The user interface is arguably the most important element of a computer-based system or

product. If the interface is poorly designed, the user’s ability to tap the computational power

of an application may be severely hindered. In fact, a weak interface may cause to fail the

well designed and implemented application.

Three important principles guide the design of effective user interfaces:

(1) Place the user in control,

(2) Reduce the user’s memory load, and

(3) Make the interface consistent.

To achieve an interface that abides by these principles, an organized design process must be

conducted. User interface design begins with the identification of user, task, and

environmental requirements. Task analysis is a design activity that defines user tasks and

actions using either an elaborative or object-oriented approach.

Once tasks have been identified, user scenarios are created and analyzed to define a set of

interface objects and actions. This provides a basis for the creation of screen layout that

depicts graphical design and placement of icons, definition of descriptive screen text,

specification and titling for windows, and specification of major and minor menu items.

Design issues such as response time, command and action structure, error handling, and help

facilities are considered as the design model is refined. A variety of implementation tools are

used to build a prototype for evaluation by the user.

The user interface is the window into the software. In many cases, the interface molds a

user’s perception of the quality of the system. If the window is smudged, wavy, or broken,

the user may reject an otherwise powerful computer-based system.

10.12 KEYWORDS

1. Use interface (UI) design- is the front-end application view to which user interacts in

order to use the software.

2. Command Line Interface- an interface that provides a command prompt, where the

38

user types the command and feeds to the system.

3. Graphical User Interface- an interface that provides the simple interactive interface to

interact with the system. GUI can be a combination of both hardware and software.

4. Mnemonics- means the keyboard shortcuts to do some action on the screen.

10.13 QUESTIONS FOR SELF STUDY

1. What is user interface?

2. Discuss User interface design activities.

3. Mention the categories of user interface.

4. Discuss the four activities of frame work of UI design using spiral model.

5. Discuss golden rules to design interface.

6. Explain in detail webapp user interface design.

7. Elaborate on design evaluation.

8. Elucidate qualitative and quantitative data collection process in design evaluation.

9. Discuss important principles to guide design effective user interface.

10. Write a short note on interface analysis.

10.14 REFERENCES

1. Software Engineering, A Practitioner’s Approach – 7th Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering : Pearson New International Edition – Ian Sommerville, 2013.

39

STRUCTURE

11.0 Objectives

11.1 Introduction

11.2 Introduction to project management

11.3 The management spectrum

11.4 People

11.4.1 The player

11.4.2 Team leader

11.4.3 The software team

11.4.4 Coordination and communication

11.5 Product

11.5.1 Software scope

11.5.2 Problem decomposition

11.6 Process

11.7 The product

11.8 W5HH principle

11.9 Critical practices

11.10 Check your progress

11.11 Summary

11.12 Key words

11.13 Questions for self-study

11.14 References

11.0 OBJECTIVES

After studying this unit, you will be able to:

 Explain project management concepts

 Learns the important attributes of project management

 Appraise the project management spectrum.

 Discuss software project planning

 Study the different roles of software engineers in PM.

 Learns to handle the risks and risk avoidance methods

UNIT-11: PROJEC MANAGEMNT CONCEPTS

40

11.1 INTRODUCTION

 In this unit, we are going to discuss about project management concepts. Software

project management is an umbrella activity within software engineering. It begins before any

technical activity is initiated and continues throughout the definition, development, and

support of computer software Four P’s have a substantial influence on software project

management—people, product, process, and project.

11.2 INTRODUCTION TO PROJECT MANAGEMENT

Software project management is an art and discipline of planning and supervising

software projects. It is a sub-discipline of software project management in which software

projects planned, implemented, monitored and controlled. It is a procedure of managing,

allocating and timing resources to develop computer software that fulfills requirements. In

software Project Management, the client and the developers need to know the length, period

and cost of the project.

Prerequisite of software project management

Below figure 11.1 shows the three needs for software project management are

Figure 11.1 pre requisites for software project management

 Time

 Cost

 Quality

It is an essential part of the software organization to deliver a quality product, keeping the

cost within the client’s budget and deliver the project as per schedule. There are various

factors, both external and internal, which may impact this triple factor. Any of three-factor

can severely affects the other two.

41

11.3 THE MANAGEMENT SPECTRUM

For properly building a product, there’s a very important concept that we all should know

in software project planning while developing a product. The four critical components are

shown in figure 11.2 These 4 critical components in software project planning are known as

the 4P’s namely:

 Product

 Process

 People

 Project

Figure 11.2 Four P’s of Software project planning

These components play a very important role in your project that can help the team to meet

its goals and objective. Now, let’s dive into each of them a little in detail to get a better

understanding:

People

The most important component of a product and its successful implementation is human

resources. In building a proper product, a well-managed team with clear-cut roles defined for

each person or team will lead to the success of the product. We need to have a good team in

order to save our time, cost, and effort. Some assigned roles in software project planning are

project manager, team leaders, stakeholders, analysts, and other IT professionals. Managing

people successfully is a tricky process which a good project manager can do.

42

Product

As the name inferred, this is the deliverable or the result of the project. The project manager

should clearly define the product scope to ensure a successful result, control the team

members, as well technical hurdles that he or she may encounter during the building of a

product. The product can consist of either tangible or intangible such as shifting the company

to a new place or getting new software in a company.

Process

In every planning, a clearly defined process is the key to the success of any product. It

regulates how the team will go about its development in the respective time period. The

Process has several steps involved like, documentation phase, implementation phase,

deployment phase, and interaction phase.

Project

The last and final P in software project planning is Project. In this phase, the project manager

plays a critical role. They are responsible to guide the team members to achieve the project’s

target and objectives, helping & assisting them with issues, checking on cost and budget, and

making sure that the project stays on track with the given deadlines.

11.4 PEOPLE

The cultivation of motivated, highly skilled software people has been discussed since

the 1960s. The people factor is so important that the Software Engineering Institute has

developed a people management capability maturity model (PM-CMM), to enhance the

readiness of software organizations to undertake increasingly complex applications by

helping to attract, grow, motivate, deploy, and retain the talent needed to improve their

software development capability.

The people management maturity model defines the following key practice areas for software

people: recruiting, selection, performance management, training, compensation, career

development, organization and work design, and team/culture development. Organizations

that achieve high levels of maturity in the people management area have a higher likelihood

of implementing effective software engineering practices.

Project Manager

A project manager is a character who has the overall responsibility for the planning, design,

execution, monitoring, controlling and closure of a project. A project manager represents an

essential role in the achievement of the projects.

43

A project manager is a character who is responsible for giving decisions, both large and small

projects. The project manager is used to manage the risk and minimize uncertainty. Every

decision the project manager makes must directly profit their project.

Role of a Project Manager:

1. Leader

A project manager must lead his team and should provide them direction to make them

understand what is expected from all of them.

2. Medium:

The Project manager is a medium between his clients and his team. He must coordinate and

transfer all the appropriate information from the clients to his team and report to the senior

management.

3. Mentor:

He should be there to guide his team at each step and make sure that the team has an

attachment. He provides a recommendation to his team and points them in the right direction.

Responsibilities of a Project Manager:

1. Managing risks and issues.

2. Create the project team and assigns tasks to several team members.

3. Activity planning and sequencing.

4. Monitoring and reporting progress.

5. Modifies the project plan to deal with the situation.

11.4.1 THE PLAYERS

The software process or software project is populated by players, who can be categorized into

one of five constituencies,

1. Senior managers who define the business issues that often have significant

influence on the project.

2. Project (technical) managers who must plan, motivate, organize, and control the

practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer a

product or application.

4. Customers who specify the requirements for the software to be engineered and

other stakeholders who have a peripheral interest in the outcome.

44

5. End-users who interact with the software once it is released for production use.

To be effective, the project team must be organized in a way that maximizes each person’s

skills and abilities. And that’s the job of the team leader.

11.4.2 TEAM LEADERS

Jerry Weinberg suggests a MOI model of leadership:

 Motivation: The ability to encourage technical people to produce to their best ability.

 Organization: The ability to mold existing processes or invent new ones that will

enable the initial concept to be translated into a final product.

 Ideas or innovation: The ability to encourage people to create and feel creative even

when they must work within bounds established for a particular software product or

application.

A software project manager should concentrate on understanding the problem to be solved,

managing the flow of ideas, and at the same time, letting everyone on the team know that

quality counts and that it will not be compromised. Four key essential qualities of a project

manager are:

 Problem solving: An effective software project manager can diagnose the technical and

organizational issues that are most relevant, systematically structure a solution or properly

motivate other practitioners to develop the solution, apply lessons learned from past

projects to new situations, and remain flexible enough to change direction if initial

attempts at problem solution are fruitless.

 Managerial identity: A good project manager must take charge of the project. He or She

must have the confidence to assume control when necessary and the assurance to allow

good technical people to follow their instincts.

 Achievement: To optimize the productivity of a project team, a manager must reward

initiative and accomplishment and demonstrate through his own actions that controlled

risk taking will not be punished.

 Influence and team building: An effective project manager must be able to read people;

project manager must be able to understand verbal and nonverbal signals and react to the

needs of the people sending these signals. The manager must remain under control in high-

stress situations.

45

11.4.3 THE SOFTWARE TEAM

There are almost as many human organizational structures for software development as there

are organizations that develop software. However, the organization of the people directly

involved in a new software project is within the project manager's purview. The following

options are available for applying human resources to a project that will require n people

working for k years:

1. n individuals are assigned to m different functional tasks, relatively little combined

work occurs; coordination is the responsibility of a software manager who may have six

other projects to be concerned with.

2. n individuals are assigned to m different functional tasks (m < n) so that informal

teams are established; an ad hoc team leader may be appointed; coordination among

teams is the responsibility of a software manager.

3. n individuals are organized into t teams; each team is assigned one or more functional

tasks; each team has a specific structure that is defined for all teams working on a

project; coordination is controlled by both the team and a software project manager.

The best team structure depends on the management style of your organization, the number

of people who will populate the team and their skill levels, and the overall problem difficulty.

Mantei suggests three generic team organizations.

 Democratic decentralized (DD): This software engineering team has no permanent

leader. Rather, task coordinators are appointed for short durations and then replaced

by others who may coordinate different tasks. Decisions on problems and approach

are made by group consensus. Communication among team members is horizontal.

 Controlled decentralized (CD): This software engineering team has a defined leader

who coordinates specific tasks and secondary leaders that have responsibility for

subtasks. Problem solving remains a group activity, but implementation of solutions is

partitioned among subgroups by the team leader. Communication among subgroups

and individuals is horizontal. Vertical communication along the control hierarchy also

occurs.

 Controlled Centralized (CC): Top-level problem solving and internal team

coordination are managed by a team leader. Communication between the leader and

team members is vertical.

46

Mantei describes seven project factors that should be considered when planning the structure

of software engineering teams:

 The difficulty of the problem to be solved.

 The size of the resultant program(s) in lines of code or function points

 The time that the team will stay together (team lifetime).

 The degree to which the problem can be modularized.

 The required quality and reliability of the system to be built.

 The rigidity of the delivery date.

 The degree of sociability (communication) required for the project.

Because a centralized structure completes tasks faster, it is the most used at handling simple

problems. Decentralized teams generate more and better solutions than individuals. Therefore

such teams have a greater probability of success when working on difficult problems. Since

the CD team is centralized for problem solving, either a CD or CC team structure can be

successfully applied to simple problems. A DD structure is best for difficult problems.

A high-performance team must be a central goal of a software engineering organization. To

achieve a high-performance team:

 Team members must have trust in one another.

 The distribution of skills must be appropriate to the problem.

 Mavericks may have to be excluded from the team, if team cohesiveness is to be

maintained.

The software project manager, working together with the team, should clearly refine roles

and responsibilities before the project begins. The team itself should establish its own

mechanisms for accountability and define a series of corrective approaches when a member

of the team fails to perform.

Every software team experiences small failures. The key to avoiding an atmosphere of failure

is to establish team-based techniques for feedback and problem solving. In addition, failure

by any member of the team must be viewed as a failure by the team itself. This leads to a

team-oriented approach to corrective action, rather than the finger-pointing and mistrust that

grows rapidly on toxic teams.

11.4.4 COORDINATION AND COMMUNICATION ISSUES

There are many reasons that software projects get into trouble. The scale of many

development efforts is large, leading to complexity, confusion, and significant difficulties in

47

coordinating team members. Uncertainty is common, resulting in a continuing stream of

changes that ratchets the project team. Interoperability has become a key characteristic of

many systems. New software must communicate with existing software and conform to

predefined constraints imposed by the system or product.

These characteristics of modern software—scale, uncertainty, and interoperability—are facts

of life. To deal with them effectively, a software engineering team must establish effective

methods for coordinating the people who do the work. To accomplish this, mechanisms for

formal and informal communication among team members and between multiple teams must

be established. Formal communication is accomplished through writing, structured meetings,

and other relatively no interactive and impersonal communication channels. Informal

communication is more personal. Members of a software team share ideas on an ad hoc basis,

ask for help as problems arise, and interact with one another on a daily basis.

Informal, interpersonal procedures include group meetings for information dissemination and

problem solving and collocation of requirements and development staff.

FIGURE 11.3 Values and Use of Coordination and Communication Techniques

Electronic communication encompasses electronic mail, electronic bulletin boards, and by

extension, video-based conferencing systems.

Interpersonal networking includes informal discussions with team members and those

outside the project who may have experience or insight that can assist team members.

To assess the efficacy of these techniques for project coordination, Kraul and Streeter studied

65 software projects involving hundreds of technical staff. Figure 11.3 expresses the value

48

and use of the coordination techniques just noted. Referring to figure, the perceived value

(rated on a seven point scale) of various coordination and communication techniques is

plotted against their frequency of use on a project. Techniques that fall above the regression

line were judged to be relatively valuable, given the amount that they were used. Techniques

that fell below the line were perceived to have less value. It is interesting to note that

interpersonal networking was rated the technique with highest coordination and

communication value. It is also important to note that early software quality assurance

mechanisms (requirements and design reviews) were perceived to have more value than later

evaluations of source code (code inspections).

11.5 THE PRODUCT

We must examine the product and the problem it is intended to solve at the very

beginning of the project. At a minimum, the scope of the product must be established and

bounded.

11.5.1 SOFTWARE SCOPE

The first software project management activity is the determination of software scope. Scope

is defined by answering the following questions:

 Context: How does the software to be built fit into a larger system, product, or

business context and what constraints are imposed as a result of the context.

 Information objectives: What customer-visible data objects are produced as output

from the software? What data objects are required for input?

 Function and performance: What function does the software perform to transform

input data into output? Are any special performance characteristics to be addressed?

Software project scope must be unambiguous and understandable at the management and

technical levels. A statement of software scope must be bounded. That is, quantitative data

like number of simultaneous users, size of mailing list, maximum allowable response time

are stated explicitly; constraints and/or limitations such as product cost restricts memory size

are noted, and mitigating factors are described.

11.5.2 PROBLEM DECOMPOSITION

Problem decomposition, sometimes called partitioning or problem elaboration, is an activity

that sits at the core of software requirements analysis. During the scoping activity no attempt

49

is made to fully decompose the problem. Rather, decomposition is applied in two major

areas: (1) the functionality that must be delivered and (2) the process that will be used to

deliver it.

11.6 THE PROCESS

The generic phases that characterize the software process—definition, development,

and support—are applicable to all software. The problem is to select the process model that is

appropriate for the software to be engineered by a project team. Wide arrays of software

engineering paradigms were discussed:

 The linear sequential model

 The prototyping model

 The RAD model

 The incremental model

 The spiral model

 The WINWIN spiral model

 The component-based development model

 The concurrent development model

 The formal methods model

 The fourth generation techniques model.

Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each function to be

engineered by the software team must pass through the set of framework activities that have

been defined for a software organization. Assume that the organization has adopted the

following set of framework activities:

 Customer communication—tasks required to establish effective requirements elicitation

between developer and customer.

 Planning—tasks required to define resources, timelines, and other project related

information.

 Risk analysis—tasks required to assess both technical and management risks.

 Engineering—tasks required to build one or more representations of the application.

 Construction and release—tasks required to construct, test, install, and provide user

support (e.g., documentation and training).

50

 Customer evaluation—tasks required to obtain customer feedback based on evaluation

of the software representations created during the engineering activity and implemented

during the construction activity.

 Process Decomposition

A software team should have a significant degree of flexibility in choosing the software

engineering paradigm that is best for the project and the software engineering tasks that

populate the process model once it is chosen. A relatively small project that is similar to

past efforts might be best accomplished using the linear sequential approach. If very tight

time constraints are imposed and the problem can be heavily compartmentalized, the

RAD model is probably the right option. If the deadline is so tight that full functionality

cannot reasonably be delivered, an incremental strategy might be best. Similarly, projects

with other characteristics (e.g., uncertain requirements, breakthrough technology, difficult

customers, and significant reuse potential) will lead to the selection of other process

models.

11.7 THE PROJECT

In order to manage a successful software project, we must understand what can go

wrong so that problems can be avoided and how to do it right. John Reel defines ten signs

that indicate that an information systems project is at risk:

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4. The chosen technology changes.

5. Business needs change or is ill-defined.

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost or was never properly obtained.

9. The project team lacks people with appropriate skills.

10. Managers and practitioners avoid best practices and lessons learned.

Five-part commonsense approach to software projects:

1. Start on the right foot: This is accomplished by working hard to understand the problem

that is to be solved and then setting realistic objects and expectations for everyone who

will be involved in the project. It is reinforced by building the right team and giving the

51

team the autonomy, authority, and technology needed to do the job.

2. Maintain momentum: Many projects get off to a good start and then slowly disintegrate.

To maintain momentum, the project manager must provide incentives to keep turnover of

personnel to an absolute minimum, the team should emphasize quality in every task it

performs, and senior management should do everything possible to stay out of the team’s

way.

3. Track progress: For a software project, progress is tracked as work products (e.g.,

specifications, source code, sets of test cases) are produced and approved using formal

technical reviews as part of a quality assurance activity.

4. Make smart decisions: In essence, the decisions of the project manager and the software

team should be to ―keep it simple.‖ Whenever possible, decide to use commercial off-the-

shelf software or existing software components, decide to avoid custom interfaces when

standard approaches are available, decide to identify and then avoid obvious risks, and

decide to allocate more time than you think is needed to complex or risky tasks.

5. Conduct a postmortem analysis: Establish a consistent mechanism for extracting lessons

learned for each project. Evaluate the planned and actual schedules, collect and analyze

software project metrics, get feedback from team members and customers, and record

findings in written form.

11.8 W5HH PRINCIPLE

We need an organizing principle that scales down to provide simple project plans for

simple projects. Boehm suggests an approach that addresses project objectives, milestones

and schedules, responsibilities, management and technical approaches, and required

resources. He calls it the WWWWWHH principle, after a series of questions that lead to a

definition of key project characteristics and the resultant project plan:

 Why is the system being developed? The answer to this question enables all parties

to assess the validity of business reasons for the software work. Stated in another way,

does the business purpose justify the expenditure of people, time, and money?

 What will be done, by when? The answers to these questions help the team to

establish a project schedule by identifying key project tasks and the milestones that

are required by the customer.

 Who is responsible for a function? Earlier in this chapter, we noted that the role and

52

responsibility of each member of the software team must be defined. The answer to

this question helps accomplish this.

 Where they are organizationally located? Not all roles and responsibilities reside

within the software team itself. The customer, users, and other stakeholders also have

responsibilities. How will the job be done technically and managerially? Once

product scope is established, a management and technical strategy for the project must

be defined.

 How much of each resource is needed? The answer to this question is derived by

developing estimates based on answers to earlier questions.

Boehm’s W5HH principle is applicable regardless of the size or complexity of a software

project. The questions noted provide an excellent planning outline for the project manager

and the software team.

11.9 CRITICAL PRACTICES

 The Airlie Council8 has developed a list of critical software practices for performance-

based management. These practices are consistently used by, and considered critical by,

highly successful software projects and organizations whose bottom line performance is

consistently much better than industry averages. In an effort to enable a software organization

to determine whether a specific project has implemented critical practices, the Airlie Council

has developed a set of Quick Look questions for a project:

 Formal risk management: What are the top ten risks for this project? For each of the

risks, what is the chance that the risk will become a problem and what is the impact if

it does?

 Empirical cost and schedule estimation: What is the current estimated size of the

application software (excluding system software) that will be delivered into

operation? How was it derived?

 Metric-based project management: Do you have in place a metrics program to give an

early indication of evolving problems? If so, what is the current requirements

volatility?

 Earned value tracking: Do you report monthly earned value metrics? If so, are these

metrics computed from an activity network of tasks for the entire effort to the next

delivery?

53

 Defect tracking against quality targets: Do you track and periodically report the

number of defects found by each inspection (formal technical review) and execution

test from program inception and the number of defects currently closed and open?

 People-aware program management: What is the average staff turnover for the past

three months for each of the suppliers/developers involved in the development of

software for this system?

If a software project team cannot answer these questions or answers them inadequately, a

thorough review of project practices is indicated.

11.10 CHECK YOUR PROGRESS

1. What are three needs for Software project management?

2. What are the 4 P’s of software project planning?

3. ____________ represents an essential role in the achievements of the projects.

4. Project planning begins with the melding of the _____and the_________

5. What are the generic phases that characterize the software process?

6. What are the two major areas where problem decomposition can be applied?

Answers to Check Your Progress

1. Cost, time and quality

2. Process, people. Product and project.

3. A project manager

4. Product and process

5. Definition, development and support.

6. i. the functionality that must be delivered and

 ii. the process will be used to delivered it

11.11 SUMMARY

Software project management is an umbrella activity within software engineering. It

begins before any technical activity is initiated and continues throughout the definition,

development, and support of computer software Four P’s have a substantial influence on

software project management—people, product, process, and project. People must be

organized into effective teams, motivated to do high-quality software work, and coordinated

to achieve effective communication. The product requirements must be communicated from

54

customer to developer, partitioned (decomposed) into their constituent parts, and positioned

for work by the software team. The process must be adapted to the people and the problem. A

common process framework is selected, an appropriate software engineering paradigm is

applied, and a set of work tasks is chosen to get the job done. Finally, the project must be

organized in a manner that enables the software team to succeed.

The pivotal element in all software projects is people. Software engineers can be organized in

a number of different team structures that range from traditional control hierarchies to open

paradigm teams. A variety of coordination and communication techniques can be applied to

support the work of the team. In general, formal reviews and informal person-to-person

communication have the most value for practitioners. The project management activity

encompasses measurement and metrics, estimation, risk analysis, schedules, tracking, and

control.

11.12 KEYWORDS

 People: Human resources are the important component of successful implementation

 Product: Deliverable project

 Leader: A project manager who leads the team

 Mentor: The one who guides the team.

11.13 QUESTIONS FOR SELF STUDY

1. What are the pre requisites for software project management?

2. What are the critical components in software project planning?

3. Discuss four P’s of software planning.

4. Discuss the role of project manager.

5. What are the three generic phase’s team organizations?

6. How can you define software scope in software project management activity.

7. Discuss the responsibilities of project manager.

8. Explain problem decomposition.

9. What are the set of framework activities have to be defined by software team for a

software organization?

10. Explain process decomposition.

11. Discuss risk indication signs.

12. What are the five commonsense approaches to software projects?

55

13. Discuss W5HH principal.

14. Discuss critical practices.

11.14 REFERENCES

1. Software Engineering, A Practitioner’s Approach – 7th Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering : Pearson New International Edition – Ian Sommerville, 2013

56

STRUCTURE

12.0 Objectives

12.1 Introduction

12.2 Introduction to estimation

12.3 Observations on Estimation

12.4 The Project Planning Process

12.5 Software Scope and Feasibility

 12.5.1 Obtaining Information Necessary for Scope

 12.5.2 Feasibility

12.6 Resources

12.6.1 Categories of Resources

12.7 Software Project Estimation

12.8 Decomposition Techniques

12.8.1 Software Sizing

12.8.2 Problem Based Estimation

12.8.3 Process Based Estimation

12.9 Empirical Estimation Models

12.10 Estimation for Object Oriented Projects

12.11 Specialized Estimation Techniques

12.12 Check your progress

12.13 Summary

12.14 Key words

12.15 Questions for self-study

12.16 References

12.0 OBJECTIVES

After studying this unit, you will be able to:

 Discuss about how the software project planner must estimate cost, time, people,

resources and risk involved.

 Describe objectives of software project planning.

 Use Decomposition Techniques

UNIT-12: ESTIMATION FOR SOFTWARE PROJECT MANAGEMENT

57

 Explain the scope of software, feasibility, availability of resources.

 Discuss techniques involved in software project estimation.

12.1 INTRODUCTION

 In this unit, we are going to discuss about estimation for software project

management. The software project planner must estimate three things before a project begins:

how long it will take, how much effort will be required, and how many people will be

involved. In addition, the planner must predict the resources (hardware and software) that

will be required and the risk involved.

12.2 INTRODUCTION TO ESTIMATION

Software project management begins with a set of activities that are collectively called

project planning. Before the project can begin, the manager and the software team must

estimate

 The work to be done,

 The resources that will be required,

 The time that will elapse from start to finish.

Whenever estimates are made, we look into the future and accept some degree of uncertainty

as a matter of course.

Although estimating is as much art as it is science, this important activity need not be

conducted in a haphazard manner. Useful techniques for time and effort estimation do exist.

Process and project metrics can provide historical perspective and powerful input for the

generation of quantitative estimates. Past experience (of all people involved) can aid

immeasurably as estimates are developed and reviewed. Because estimation lays a foundation

for all other project planning activities and project planning provides the road map for

successful software engineering.

Project planning involves estimation of your attempt to determine

 how much money

 how much effort

 how many resources and

 how much time

58

It will take to build a specific software-based system or product. Software managers will do

this using

 information solicited from customers and software engineers and

 Software metrics data collected from past projects.

 It would seem reasonable to develop an estimate before you start creating the software

because most computer-based systems and products cost considerably more to build.

Estimation-

 Begins with a description of the scope of the product. Until the scope is ―bounded‖

it’s not possible to develop a meaningful estimate.

 The problem is then decomposed into a set of smaller problems and each of these is

estimated using historical data and experience as guides. It is advisable to generate

your estimates using at least two different methods (as a cross check).

 Problem complexity and risk are considered before a final estimate is made.

 A simple table delineating the tasks to be performed, the functions to implemented,

and the cost, effort, and time involved for each is generated.

 A list of required project resources is also produced.

Estimation is the process of finding an estimate, or approximation, which is a value that can

be used for some purpose even if input data may be incomplete, uncertain, or unstable.

The four basic steps in Software Project Estimation are −

 Estimate the size of the development product.

 Estimate the effort in person-months or person-hours.

 Estimate the schedule in calendar months.

 Estimate the project cost in agreed currency.

12.3 OBSERVATION ON ESTIMATION

Estimation of resources, cost, and schedule for a software engineering effort requires

 Experience,

 Access to good historical information,

 The courage to commit to quantitative predictions when qualitative information is all

that exists.

 Identify inherent risk that may lead to uncertainty.

59

Factors that affect the estimation process:

(a) Project complexity-

 Has a strong effect on the uncertainty inherent in planning.

 Is a relative measure that is affected by familiarity with past effort?

 More subjective assessments of complexity can be established early in the planning

process.

(b) Project size-

 is another important factor that can affect the accuracy and efficacy of estimates.

 As size increases, the interdependency among various elements of the software grows

rapidly.

 Problem decomposition, an important approach to estimating, becomes more difficult

because decomposed elements may still be formidable.

 The degree of structural uncertainty also has an effect on estimation risk.

(c) The availability of historical information

 Has a strong influence on estimation risk.

 By looking back, we can emulate things that worked and improve areas where

problems arose.

 When comprehensive software metrics are available for past projects, estimates can

be made with greater assurance, schedules can be established to avoid past

difficulties, and overall risk is reduced.

Risk is measured by the degree of uncertainty in the quantitative estimates established for

resources, cost, and schedule. If project scope is poorly understood or project requirements

are subject to change, uncertainty and risk become dangerously high.

The software planner should demand-

 completeness of function

 performance and

 Interface definitions (contained in a System Specification).

The planner, and more important, the customer should recognize that variability in software

requirements means instability in cost and schedule.

12.4 THE PROJECT PLANNING PROCESS

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of:

60

 resources

 cost

 Schedule.

These estimates are made within a limited time frame at the beginning of a software project

and should be updated regularly as the project progresses. In addition, estimates should

attempt to define best case and worst case scenarios so that project outcomes can be bounded.

The planning objective is achieved through a process of information discovery that leads to

reasonable estimates.

12.5 SOFTWARE SCOPE AND FEASIBILITY

The first activity in software project planning is the determination of software scope.

Function and performance allocated to software during system engineering should be

assessed to establish a project scope that is unambiguous and understandable at the

management and technical levels. A statement of software scope must be bounded. Software

scope describes

 the data and control to be processed,

 function,

 performance,

 constraints,

 interfaces and

 Reliability.

Functions described in the statement of scope are evaluated and in some cases refined to

provide more detail prior to the beginning of estimation. Because both cost and schedule

estimates are functionally oriented, some degree of decomposition is often useful.

Performance considerations encompass

 processing and

 Response time requirements.

Constraints identify limits placed on the

 software by external hardware,

 available memory, or

 Other existing systems.

61

12.5.1 OBTAINING INFORMATION NECESSARY FOR SCOPE

The most commonly used technique to bridge the communication gap between the customer

and developer and to get the communication process started is to

(a) conduct a preliminary meeting or interview:

The first meeting between the software engineer (the analyst) and the customer can be

likened to the awkwardness of a first date between two adolescents. Neither person knows

what to say or ask; both are worried that what they do say will be misinterpreted; both are

thinking about where it might lead (both likely have radically different expectations here);

both want to get the thing over with; but at the same time, both want it to be a success.

Yet, communication must be initiated. Gause and Weinberg suggest that the analyst start by

asking context-free questions; that is, a set of questions that will lead to a basic understanding

of the problem, the people who want a solution, the nature of the solution desired, and the

effectiveness of the first encounter itself.

The first set of context-free questions focuses on the customer, the overall goals and

benefits. For example, the analyst might ask:

 • Who is behind the request for this work?

 • Who will use the solution?

 • What will be the economic benefit of a successful solution?

 • Is there another source for the solution?

The next set of questions enables the analyst to gain a better understanding of the

problem and the customer to voice any perceptions about a solution:

 • How would you (the customer) characterize "good" output that would be generated by a

successful solution?

 • What problem(s) will this solution address?

 • Can you show me (or describe) the environment in which the solution will be used?

The final set of questions focuses on the effectiveness of the meeting. Gause and

Weinberg call these "meta-questions" and propose the following (abbreviated) list:

• Are you the right person to answer these questions? Are answers "official"?

• Are my questions relevant to the problem that you have?

 • Am I asking too many questions?

• Can anyone else provide additional information?

62

The question and answer meeting format is not an approach that has been overwhelmingly

successful. In fact, the Q&A session should be used for the first encounter only and then be

replaced by a meeting format that combines elements of problem solving, negotiation, and

specification.

(b) Communication through meeting format:

 Customers and software engineers often have an unconscious "us and them" mindset. Rather

than working as a team to identify and refine requirements, each constituency defines its own

"territory" and communicates through a series of memos, formal position papers, documents,

and question and answer sessions. History has shown that this approach works poorly.

Misunderstandings abound, important information is omitted, and a successful working

relationship is never established.

12.5.2 FEASIBILITY

Software feasibility has four solid dimensions:

 Technology—

 Is a project technically feasible?

 Is it within the state of the art?

 Can defects be reduced to a level matching the application’s needs?

 Finance—

 Is it financially feasible?

 Can development be completed at a cost the software organization, its client, or the

market can afford?

 Time—Will the project’s time-to-market beat the competition?

 Resources—Does the organization have the resources needed to succeed?

For some projects in established areas the answers are easy.

 You have done projects like this one before. After a few hours or sometimes a few

weeks of investigation, you are sure you can do it again.

Projects on the margins of your experience are not so easy.

 A team may have to spend several months discovering what the central, difficult-to-

implement requirements of a new application actually are.

 Do some of these requirements pose risks that would make the project infeasible? Can

these risks be overcome?

63

 The feasibility team ought to carry initial architecture and design of the high-risk

requirements to the point at which it can answer these questions.

 In some cases, when the team gets negative answers, a reduction in requirements may

be negotiated.

12.6 RESOURCES

The second software planning task is estimation of the resources required to accomplish

the software development effort. Fig 12.1 illustrates development resources as a pyramid.

 The development environment—hardware and software tools—sits at the foundation

of the resources pyramid and provides the infrastructure to support the development

effort.

 At a higher level, we encounter reusable software components—software building

blocks that can dramatically reduce development costs and accelerate delivery.

 At the top of the pyramid is the primary resource—people. Each resource is specified

with four characteristics:

(a) description of the resource,

(b) a statement of availability,

(c) time when the resource will be required;

(d) duration of time that resource will be applied.

The last two characteristics can be viewed as a time window. Availability of the resource for

a specified window must be established at the earliest practical time.

Fig 12.1. Development resources as a pyramid

64

12.6.1 CATEGORIES OF RESOURCES

Resources are majorly categorized into three, they are

 (a) Human resources

 Planners need to select the number and the kind of people skills needed to complete

the project. They need to specify the organizational position and job specialty for each

person.

 Small projects of a few person-months may only need one individual.

 Large projects spanning many person-months or years require the location of the

person to be specified also.

 The number of people required can be determined only after an estimate of the

development effort.

(b) Development Environment Resources

 A software engineering environment (SEE) incorporates hardware, software, and

network resources that provide platforms and tools to develop and test software work

products.

 Most software organizations have many projects that require access to the SEE

provided by the organization.

 Planners must identify the time window required for hardware and software and

verify that these resources will be available.

(c) Reusable Software Resources

 Component-based software engineering (CBSE) emphasizes reusability—that is, the

creation and reuse of software building blocks.

 Such building blocks, often called components, must be cataloged for easy reference,

standardized for easy application, and validated for easy integration.

 Bennatan suggests four software resource categories that should be considered as

planning proceeds:

(i) Off-the-shelf components: Existing software that can be acquired from a third

party or that has been developed internally for a past project.

(ii) Full-experience components: Existing specifications, designs, code, or test data

developed for past projects that are similar to the software to be built for the current

project. Members of the current software team have had full experience in the

65

application area represented by these components. Therefore, modifications required

for full-experience components will be relatively low-risk.

(iii) Partial-experience components: Existing specifications, designs, code, or test

data developed for past projects that are related to the software to be built for the

current project but will require substantial modification. Members of the current

software team have only limited experience in the application area represented by

these components. Therefore, modifications required for partial-experience

components have a fair degree of risk.

(iv) New components: Software components that must be built by the software team

specifically for the needs of the current project.

The following guidelines should be considered by the software planner when reusable

components are specified as a resource:

 If off-the-shelf components meet project requirements, acquire them. The cost for

acquisition and integration of off-the-shelf components will almost always be less

than the cost to develop equivalent software. In addition, risk is relatively low.

 If full-experience components are available, the risks associated with modification

and integration is generally acceptable.

 If partial-experience components are available, their use for the current project must

be analyzed. If extensive modification is required before the components can be

properly integrated with other elements of the software, proceed carefully—risk is

high.

12.7 SOFTWARE PROJECT ESTIMATION

For complex, custom systems, a large cost estimation error can make the difference

between profit and loss. Cost overrun can be disastrous for the developer.

Too many variables—human, technical, environmental, political—can affect the ultimate cost

of software and effort applied to develop it. However, software project estimation can be

transformed from a black art to a series of systematic steps that provide estimates with

acceptable risk. To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100%

accurate estimates after the project is complete!)

2. Base estimates on similar projects that have already been completed.

66

3. Use relatively simple decomposition techniques to generate project cost and

effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Decomposition techniques take a "divide and conquer" approach to software project

estimation. By decomposing a project into major functions and related software engineering

activities, cost and effort estimation can be performed in a stepwise fashion.

Empirical estimation models can be used to complement decomposition techniques and

offer a potentially valuable estimation approach in their own right. A model is based on

experience (historical data) and takes the form d = f (vi) where, d is one of a number of

estimated values (e.g., effort, cost, project duration) and vi are selected independent

parameters (e.g., estimated LOC or FP).

Automated estimation tools implement one or more decomposition techniques or empirical

models. When combined with a graphical user interface, automated tools provide an

attractive option for estimating.

12.8 DECOMPOSITION TECHNIQUES

Software project estimation is a form of problem solving, and in most cases, the

problem to be solved (i.e., developing a cost and effort estimate for a software project) is too

complex to be considered in one piece. For this reason, we decompose the problem, re-

characterizing it as a set of smaller (and hopefully, more manageable) problem.

Estimation uses one or both forms of partitioning. But before an estimate can be made, the

project planner must understand the scope of the software to be built and generate an estimate

of its ―size.‖

12.8.1 SOFTWARE SIZING

The accuracy of a software project estimate is predicated on a number of things:

(1) The degree to which the planner has properly estimated the size of the product to be

built;

(2) The ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

(3) The degree to which the project plan reflects the abilities of the software team; and

(4) The stability of product requirements and the environment that supports the software

engineering effort.

67

The methods to achieve reliable size and cost estimates:

 LOC‐based estimation

 FP‐based estimation

 Empirical estimation models

 COCOMO

Function point sizing: The planner develops estimates of the information domain

characteristics.

Standard component sizing: Software is composed of a number of different ―standard

components‖ that are generic to a particular application area.

For example, the standard components for an information system are subsystems, modules,

screens, reports, interactive programs, batch programs, files, LOC, and object-level

instructions. The project planner estimates the number of occurrences of each standard

component and then uses historical project data to determine the delivered size per standard

component.

Change sizing. This approach is used when a project encompasses the use of existing

software that must be modified in some way as part of a project. The planner estimates the

number and type (e.g., reuse, adding code, changing code, deleting code) of modifications

that must be accomplished. Using an effort ratio for each type of change, the size of the

change may be estimated.

12.8.2 PROBLEM-BASED ESTIMATION

Lines of code and function points were described as measures from which productivity

metrics can be computed. LOC and FP data are used in two ways during software project

estimation:

(1) as an estimation variable to "size" each element of the software and

(2) as baseline metrics collected from past projects and used in conjunction with

estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number of

characteristics in common.

The problems of lines of code (LOC)

– Different languages lead to different lengths of code

– It is not clear how to count lines of code

– A report, screen, or GUI generator can generate thousands of lines of code in minutes

68

– Depending on the application, the complexity of code is different

An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, let us consider a

software package to be developed for a computer-aided design application for mechanical

components. A review of the System Specification indicates that the software is to execute on

an engineering workstation and must interface with various computer graphics peripherals

including a mouse, digitizer, high resolution color display and laser printer. Using the System

Specification as a guide, a preliminary statement of software scope can be developed.

For our purposes, we assume that further refinement has occurred and that the following

major software functions are identified:

 User interface and control facilities (UICF)

 Two-dimensional geometric analysis (2DGA)

 Three-dimensional geometric analysis (3DGA)

 Database management (DBM)

 Computer graphics display facilities (CGDF)

 Peripheral control function (PCF)

 Design analysis modules (DAM)

Following the decomposition technique for LOC, an estimation table, shown in Fig 12.2, is

developed. A range of LOC estimates is developed for each function. For example, the range

of LOC estimates for the 3D geometric analysis function is optimistic—4600 LOC, most

likely—6900 LOC, and pessimistic—8600 LOC.

Fig 12.2 Estimation table for the LOC method

69

Applying Equation,

S = (sopt + 4sm + spess)/6

the expected value for the 3D geometric analysis function is 6800 LOC. Other estimates are

derived in a similar fashion. By summing vertically in the estimated LOC column, an

estimate of 33,200 lines of code is established for the CAD system.

 A review of historical data indicates that the organizational average productivity for

systems of this type is 620 LOC/pm.

 Based on a burdened labor rate of $8000 per month, the cost per line of code is

approximately $13. Based on the LOC estimate and the historical productivity data,

the total estimated project cost is $431,000 and the estimated effort is 54 person-

months 1.

An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values rather than

software functions. Referring to the function point calculation table, the project planner

estimates inputs, outputs, inquiries, files, and external interfaces for the CAD software. For

the purposes of this estimate, the complexity weighting factor is assumed to be average. Fig

12.3 presents the results of this estimation.

Fig 12.3 Estimating information domain values

Each of the complexity weighting factors is estimated and the complexity adjustment factor is

computed.

70

Figure 12.4 Derived estimated number of FP

The organizational average productivity for systems of this type is 6.5 FP/pm. Based on a

burdened labor rate of $8000 per month, the cost per FP is approximately $1230. Based on

the LOC estimate and the historical productivity data, the total estimated project cost is

$461,000 and the estimated effort is 58 person-months.

12.8.3 PROCESS-BASED ESTIMATION

In process based estimation, the process is decomposed into a relatively small set of tasks and

the effort required to accomplish each task is estimated.

 Like the problem-based techniques, process-based estimation begins with a delineation of

software functions obtained from the project scope. A series of software process activities

must be performed for each function. Functions and related software process activities may

be represented as part of a table similar to the one presented in Fig 12.4.

Once problem functions and process activities are melded, the planner estimates the effort

(e.g., person-months) that will be required to accomplish each software process activity for

each software function. These data constitute the central matrix of the table in Fig 12.5

average labor rates (i.e., cost/unit effort) are then applied to the effort estimated for each

process activity. It is very likely the labor rate will vary for each task. Senior staffs heavily

involved in early activities are generally more expensive than junior staff involved in later

design tasks, code generation, and early testing.

71

Fig 12.5 Process-based estimation table

Costs and effort for each function and software process activity are computed as the last step.

If process-based estimation is performed independently of LOC or FP estimation, we now

have two or three estimates for cost and effort that may be compared and reconciled.

12.9 EMPHERICAL ESTIMATION MODELS

An estimation model for computer software uses empirically derived formulas to

predict effort as a function of LOC or FP.

The empirical data that support most estimation models are derived from a limited sample of

projects. For this reason, no estimation model is appropriate for all classes of software and in

all development environments.

The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from past

software projects. The overall structure of such models takes the form

 E = A + B x (ev)C

where A, B, and C are empirically derived constants, E is effort in person-months, and ev is

the estimation variable (either LOC or FP). In addition to the relationship noted in Equation,

the majority of estimation models have some form of project adjustment component that

enables E to be adjusted by other project characteristics (e.g., problem complexity, staff

72

experience, development environment). Among the many LOC-oriented estimation models

proposed in the literature are

E = 5.2 x (KLOC)0.91 Walston-Felix model

E = 5.5 + 0.73 x (KLOC)1.16 Bailey-Basili model

E = 3.2 x (KLOC)1.05 Boehm simple model

E = 5.288 x (KLOC)1.047 Doty model for KLOC > 9

FP-oriented models have also been proposed. These include

E = 13.39 + 0.0545 FP Albrecht and Gaffney model

 E = 60.62 x 7.728 x 10-8 FP3 Kemerer model

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp model

 A quick examination of these models indicates that each will yield a different result for the

same values of LOC or FP.

THE COCOMO MODEL

Barry Boehm introduced a hierarchy of software estimation models bearing the name

COCOMO, for COnstructive COst MOdel. The original COCOMO model became one of the

most widely used and discussed software cost estimation models in the industry. It has

evolved into a more comprehensive estimation model, called COCOMO II. Like its

predecessor, COCOMO II is actually a hierarchy of estimation models that address the

following areas:

Application composition model: Used during the early stages of software engineering, when

prototyping of user interfaces, consideration of software and system interaction, assessment

of performance, and evaluation of technology maturity are paramount.

Early design stage model: Used once requirements have been stabilized and basic software

architecture has been established.

Post-architecture-stage model: Used during the construction of the software. Like all

estimation models for software, the COCOMO II models require sizing information. Three

different sizing options are available as part of the model hierarchy: (a) object points, (b)

function points and (c) lines of source code.

The COCOMO II application composition model uses object points and is illustrated in the

following paragraphs. It should be noted that other, more

73

Figure 12.6 Table of complexity weighting for object types

Sophisticated estimation models (using FP and KLOC) are also available as part of

COCOMO II. Like, function points, the object point is an indirect software measure that is

computed using counts of the number of (1) screens (at the user interface), (2) reports (3)

components. Each object instance (e.g., a screen or report) is classified into one of three

complexity levels (i.e., simple, medium, or difficult) using criteria suggested by Boehm. In

essence, complexity is a function of the number and source of the client and server data tables

that are required to generate the screen or report and the number of views or sections

presented as part of the screen or report. Once complexity is determined, the number of

screens, reports, and components are weighted according to table in the figure12.7. The

object point count is then determined by multiplying the original number of object instances

by the weighting factor in table in figure 12.7 and summing to obtain a total object point

count. When component-based development or general software reuse is to be applied, the

percent of reuse (%reuse) is estimated and the object point count is adjusted using the

following formula: NOP = (object points) x [(100-%reuse)/100], where, NOP is defined as

new object points.

To derive an estimate of effort based on the computed NOP value, a ―productivity rate‖ must

be derived. Table 12.8 presents the productivity rate for different levels of developer

experience and development environment maturity. Once the productivity rate has been

determined, an estimate of project effort can be derived as estimated effort = NOP/PROD

 PROD = NOP/person-month

Figure 12.8 Table for productivity rates for object points

74

The Software Equation

The software equation is a dynamic multivariable model that assumes a specific distribution

of effort over the life of a software development project. The model has been derived from

productivity data collected for over 4000 contemporary software projects. Based on these

data, an estimation model of the form

E = [LOC × B0.333/P]3 × (1/t4) (5-3) where E = effort in person-months or person-years

t = project duration in months or years

B = ―special skills factor‖16

P = ―productivity parameter‖ that reflects:

 Overall process maturity and management practices

 The extent to which good software engineering practices are used

 The level of programming languages used

 The state of the software environment

 The skills and experience of the software team

 The complexity of the application

Typical values might be P = 2,000 for development of real-time embedded software; P =

10,000 for telecommunication and systems software; P = 28,000 for business systems

applications. The productivity parameter can be derived for local conditions using historical

data collected from past development efforts.

 It is important to note that the software equation has two independent parameters:

(1) an estimate of size (in LOC) and

(2) an indication of project duration in calendar months or years.

To simplify the estimation process and use a more common form for their estimation model,

Putnam and Myers suggest a set of equations derived from the software equation. Minimum

development time is defined as

 tmin = 8.14 (LOC/P)0.43 in months for tmin > 6 months

 where, t is represented in years, P=12,000

E = 180 Bt3 in person-months for E ≥ 20 person-months

tmin = 8.14 (33200/12000)0.43

 tmin = 12.6 calendar months

75

 E = 180 × 0.28 × (1.05)3

E = 58 person-months

The results of the software equation correspond favorably with the estimates developed.

12.10 ESTIMATION FOR OBJECT ORIENTED PROJECTS

It is worthwhile to supplement conventional software cost estimation methods with a

technique (as shown the table in figure 12.9) that has been designed explicitly for OO

software. Lorenz and Kidd suggest the following approach:

1. Develop estimates using effort decomposition, FP analysis, and any other method that

is applicable for conventional applications.

2. Using the requirements model, develop use cases and determine a count. Recognize

that the number of use cases may change as the project progresses.

3. From the requirements model, determine the number of key classes.

4. Categorize the type of interface for the application and develop a multiplier for support

classes:

Figure 12.9 Estimation table

Multiply the number of key classes (step 3) by the multiplier to obtain an estimate for

the number of support classes.

5. Multiply the total number of classes (key + support) by the average number of work

units per class. Lorenz and Kidd suggest 15 to 20 person-days per class.

6. Cross-check the class-based estimate by multiplying the average number of work units

per use case.

12.11 SPECIALIZED ESTIMATION TECHNIQUES

When a software team encounters an extremely short project duration (weeks rather

than months) that is likely to have a continuing stream of changes, project planning in general

and estimation in particular should be abbreviated.

76

12.11.1 ESTIMATION FOR AGILE DEVELOPMENT

Because the requirements for an agile project are defined by a set of user scenarios (e.g.,

stories in Extreme Programming), it is possible to develop an estimation approach that is

informal, reasonably disciplined, and meaningful within the context of project planning for

each software increment. Estimation for agile projects uses a decomposition approach that

encompasses the following steps:

1. Each user scenario (the equivalent of a mini use case created at the very start of a project

by end users or other stakeholders) is considered separately for estimation purposes.

2. The scenario is decomposed into the set of software engineering tasks that will be required

to develop it.

3a. the effort required for each task is estimated separately. Note: Estimation can be based on

historical data, an empirical model, or experience.

3b. the volume of the scenario can be estimated in LOC, FP, or some other volume-oriented

measure (e.g., use-case count).

4a. Estimates for each task are summed to create an estimate for the scenario.

4b. alternatively, the volume estimate for the scenario is translated into effort using historical

data.

5. The effort estimates for all scenarios that are to be implemented for a given software

increment are summed to develop the effort estimate for the increment.

Because the project duration required for the development of a software increment is quite

short (typically three to six weeks), this estimation approach serves two purposes:

(1) to be certain that the number of scenarios to be included in the increment

conforms to the available resources, and

(2) to establish a basis for allocating effort as the increment is developed.

12.11.2 ESTIMATION FOR WEBAPP PROJECTS

WebApp projects often adopt the agile process model. A modified function point measure,

coupled with the steps outlined in the previous section, can be used to develop an estimate for

the WebApp. Roetzheim suggests the following approach when adapting function points for

WebApp estimation:

 Inputs are each input screen or form (for example, CGI or Java), each

maintenance screen, and if you use a tab notebook metaphor anywhere, each tab.

77

 Outputs are each static Web page, each dynamic Web page script (for example,

ASP,

 ISAPI, or other DHTML script), and each report (whether Web based or

administrative in nature).

 Tables are each logical table in the database plus, if you are using XML to store

data in a file, each XML object (or collection of XML attributes).

 Interfaces retain their definition as logical files (for example, unique record

formats) into our out-of-the-system boundaries.

 Queries are each externally published or use a message-oriented interface. A

typical example is DCOM or COM external references.

Function points (interpreted in the manner noted) are a reasonable indicator of volume for a

WebApp.

Mendes and her colleagues suggest that the volume of a WebApp is best determined by

collecting measures (called ―predictor variables‖) associated with the application (e.g., page

count, media count, function count), its Web page characteristics (e.g., page complexity,

linking complexity, graphic complexity), media characteristics (e.g., media duration), and

functional characteristics (e.g., code length, reused code length). These measures can be used

to develop empirical estimation models for total project effort, page authoring effort, media

authoring effort, and scripting effort.

12.12 CHECK YOUR PROGRESS

1. Process and project metrics can provide ____________ for the generation of quantitative

estimate.

2. The ―size‖ of software to be built can be estimated using a direct measure,

_____________ or an indirect measure, _____________.

3. The purpose of planning a project is to identify the sequence of activities as per their

complexities and dependencies. (True / False).

4. Cost in a project includes software, hardware, and human resources. (True / False).

5. When there are disagreements between the project lead and the overall project manager,

the same can be resolved through ___.

6. COCOMO stands for ___.

78

Answers to check your progress:

1. Historical perspective and powerful input

2. LOC, FP

3. True

4. True

5. Change control board

6. Constructive Cost Model

12.13 SUMMARY

The software project planner must estimate three things before a project begins: how

long it will take, how much effort will be required, and how many people will be involved. In

addition, the planner must predict the resources (hardware and software) that will be required

and the risk involved. The statement of scope helps the planner to develop estimates using

one or more techniques that fall into two broad categories: decomposition and empirical

modeling. Decomposition techniques require a delineation of major software functions,

followed by estimates of either (1) the number of LOC, (2) selected values within the

information domain, (3) the number of person-months required to implement each function,

or (4) the number of person-months required for each software engineering activity.

Empirical techniques use empirically derived expressions for effort and time to predict these

project quantities. Automated tools can be used to implement a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just noted. By

comparing and reconciling estimates derived using different techniques, the planner is more

likely to derive an accurate estimate. Software project estimation can never be an exact

science, but a combination of good historical data and systematic techniques can improve

estimation accuracy.

12.14 KEYWORDS

 Software project management-is an umbrella activity within software engineering. It

begins Project complexity, project size, and the degree of structural uncertainty all affect

the reliability of estimates.

 Estimation- is the process of finding an estimate, or approximation, which is a value that

can be used for some purpose even if input data may be incomplete, uncertain, or

unstable.

79

 Decomposition technique- is a technique that take a "divide and conquer" approach to

software project estimation.

 Empirical estimation- is an estimation technique that can be used to complement

decomposition techniques and offer a potentially valuable estimation approach in their

own right.

12.15 QUESTIONS FOR SELF STUDY

1. Define software project management. Explain the role of project managers in software

project management.

2. What is project estimation? Mention the four steps of software project estimation.

3. List out the factors that affect the project estimation.

4. Briefly explain the project planning process.

5. Discuss the scope of project estimation.

6. Discuss the characteristics and categories of estimation of resources.

7. Write short notes on: (a) LOC (b) FP

8. Give an account on COCOMO Model.

9. Discuss estimation for object oriented projects.

12.16 REFERENCES

1. Software Engineering, A Practitioner’s Approach – 7
th

 Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering : Pearson New International Edition – Ian Sommerville, 2013

Karnataka State Open University

Mukthagangothri, Mysore – 570 006.

Dept. of Studies and Research in Management

MBA IT Specialization

IV Semester

MBSC-4.1G Software Project Management

Block 4

PREFACE

Computer software has become a driving force. It is the engine that drives business

decision making. It serves as the basis for modern scientific investigation and engineering

problem solving. It is a key factor that differentiates modern products and services. It is

embedded in systems of all kinds: transportation, medical, telecommunications, military,

industrial processes, entertainment, office products, . . . the list is almost endless. Software is

virtually inescapable in a modern world. And as we move into the twenty-first century, it will

become the driver for new advances in everything from elementary education to genetic

engineering.

When a computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify and even

easier to use—it can and does change things for the better. But when software fails—when its

users are dissatisfied, when it is error prone, when it is difficult to change and even harder to

use—bad things can and do happen. We all want to build software that makes things better,

avoiding the bad things that lurk in the shadow of failed efforts. To succeed, we need

discipline when software is designed and built. We need an engineering approach.

The whole material is organized into four modules each with four units. Each unit

lists the objectives of the study along with the relevant questions, illustrations and suggested

reading to better understand the concepts.

Wish you happy reading!!!

KARNATAKA STATE OPEN UNIVERSITY

MUKTHAGANGOTRI, MYSURU-06

Dept. of Studies and Research in Management

MBA IT

IV SEMESTER

MBSC-4.1G Software Project Management

BLOCK 4: SOFTWARE MAINTENANCE – REENGINEERING, SOFTWARE

PROCES IMPROVEMENT, EMERGING TRENDS

UNIT-13: SOFTWARE MAINTENANCE 1-14

UNIT-14: SOFTWARE PROCESS IMPROVEMENTS 15-38

UNIT-15: EMERGING TRENDS IN SOFTWARE ENGINEERING 39-62

UNIT-16: PRACTICING WITH AN ONLINE PROJEC MANAGEMENT TOOL 63-78

BLOCK 4 INTRODUCTION

 Re-engineering is the reorganizing and modifying existing software systems to make

them more maintainable. In this block, we are discussing about software maintenance and

reengineering techniques. Software Maintenance is the process of modifying a software

product after it has been delivered to the customer. The main purpose of software

maintenance is to modify and update software applications after delivery to correct faults and

to improve performance.

Software Re-engineering is a process of software development which is done to improve the

maintainability of a software system. Re-engineering is the examination and alteration of a

system to reconstitute it in a new form. This process encompasses a combination of sub-

processes like reverse engineering, forward engineering, reconstructing etc.

This block consists of four units and is organized as follows:

Unit 13: Software Maintenance – Software Maintenance, Supportability, Reengineering,

BPR, Software Reengineering, Reverse Engineering, Restructuring, Forward

Engineering, the Economics of Reengineering

Unit 14: Software Process Improvement: SPI Process, the CMMI, People CMM, Other SPI

Frameworks, SPI Return on Investment, SPI Trends

Unit 15: Emerging Trends in Software Engineering: Technology Evolution, Identifying

Soft Trends, Technology Directions, and Tools Related Trends, Agile Project

Management

Unit 16: Practicing with an online Project Management Tool

Any one of the tools listed below:

https://www.monday.com

http://www.monday.com/

1

STRUCTURE

13.0 Objectives

13.1 Introduction

13.2 Software Maintenance, Supportability.

13.3 System Reengineering,

13.4 Business process re-engineering (BPR)

13.5 Software Reengineering,

13.6 Reverse Engineering,

13.7 Program Restructuring,

13.8 Forward Engineering,

13.9 The Economics of Reengineering

13.10 Check Your Progress

13.11 Summary

13.12 Key words

13.13 Questions for self-study

13.14 References

13.0 OBJECTIVES

After studying this unit, you will be able to:

 Understand about software maintenance

 System re-engineering process.

 Understand Phases of BPR

 Reverse re-engineering process

 Program Restructuring

 Forward Engineering

 Economics of Reengineering

13.1 INTRODUCTION

 In this unit, we are going to discuss about software maintenance. The objective of re-

engineering is to improve the system structure to make it easier to understand and maintain.

UNIT-13: SOFTWARE MAINTENANCE

2

The re-engineering process involves source code translation, reverse engineering, program

structure improvement, program modularization and data re-engineering.

13.2 SOFTWARE MAINTENANCE SUPPORTABILITY

 Software Maintenance is the process of modifying a software product after it has

been delivered to the customer. The main purpose of software maintenance is to modify and

update software applications after delivery to correct faults and to improve performance.

Need for Maintenance –

Software Maintenance must be performed in order to:

 Correct faults.

 Improve the design.

 Implement enhancements.

 Interface with other systems.

 Accommodate programs so that different hardware, software, system features, and

telecommunications facilities can be used.

 Migrate legacy software.

 Retire software.

Types of maintenance

In a software lifetime, type of maintenance may vary based on its nature. It may be just a

routine maintenance tasks as some bug discovered by some user or it may be a large event in

itself based on maintenance size or nature. Following are some types of maintenance based

on their characteristics:

Corrective Maintenance - This includes modifications and updating done in order to correct

or fix problems, which are either discovered by user or concluded by user error reports.

Adaptive Maintenance - This includes modifications and updating applied to keep the

software product up-to date and tuned to the ever changing world of technology and business

environment.

Perfective Maintenance - This includes modifications and updates done in order to keep the

software usable over long period of time. It includes new features, new user requirements for

refining the software and improve its reliability and performance.

3

Preventive Maintenance - This includes modifications and updating to prevent future

problems of the software. It aims to attend problems, which are not significant at this moment

but may cause serious issues in future.

Maintenance Activities

FIGURE 13.1 Maintenance Activities Phase

These activities go hand-in-hand with each of the following phase:

Identification & Tracing - It involves activities pertaining to identification of requirement of

modification or maintenance. It is generated by user or system may itself report via logs or

error messages. Here, the maintenance type is classified also.

Analysis - The modification is analyzed for its impact on the system including safety and

security implications. If probable impact is severe, alternative solution is looked for. A set of

required modifications is then materialized into requirement specifications. The cost of

modification/maintenance is analyzed and estimation is concluded.

Design - New modules, which need to be replaced or modified, are designed against

requirement specifications set in the previous stage. Test cases are created for validation and

verification.

Implementation - The new modules are coded with the help of structured design created in

the design step. Every programmer is expected to do unit testing in parallel.

4

System Testing - Integration testing is done among newly created modules. Integration

testing is also carried out between new modules and the system. Finally the system is tested

as a whole, following regressive testing procedures.

Acceptance Testing - After testing the system internally, it is tested for acceptance with the

help of users. If at this state, user complaints some issues they are addressed or noted to

address in next iteration.

Delivery - After acceptance test, the system is deployed all over the organization either by

small update package or fresh installation of the system. The final testing takes place at client

end after the software is delivered.

Training facility is provided if required, in addition to the hard copy of user manual.

Maintenance management - Configuration management is an essential part of system

maintenance. It is aided with version control tools to control versions, semi-version or patch

management.

13.3 SYSTEM RE-ENGINEERING

Re-structuring or re-writing a part or all of a legacy system without changing its

functionality. Applicable where some but not all sub-systems of a larger system require

frequent maintenance Re-engineering involves adding effort to make them easier to maintain.

The system may be re-structured and re-documented.

When to re-engineer

 When system changes are mostly confined to part of the system then re-engineer that

part

 When hardware or software support becomes obsolete

 When new ways of accessing are needed, but its functionality remains

 When tool support is are available

Re-engineering advantages

Reduced risk

There is a high risk in new software development. There may be development problems,

staffing problems and specification problems

5

Reduced cost

The cost of re-engineering is often significantly less than the costs of developing new

software.

13.4 BUSINESS PROCESS RE- ENGINEERING (BPR)

 Is not just a change, but actually it is a dramatic change and dramatic improvements.

This is only achieved through overhaul the organization structures, job descriptions,

performance management, training and the most importantly, the use of IT i.e. Information

Technology.

FIGURE 13.2 Business Process Re-engineering

BPR projects have failed sometimes to meet high expectations. Many unsuccessful BPR

attempts are due to the confusion surrounding BPR and how it should be performed. It

becomes the process of trial and error.

PHASES OF BPR:

According to Peter F. Drucker,‖ Re-engineering is new, and it has to be done.‖ There are 7

different phases for BPR. All the projects for BPR begin with the most critical requirement

i.e. communication throughout the organization.

1. Begin organizational change.

2. Build the re-engineering organization.

3. Identify BPR opportunities.

4. Understand the existing process.

5. Reengineer the process

6

6. Blueprint the new business system.

7. Perform the transformation.

OBJECTIVES OF BPR:

Following are the objectives of the BPR:

 To dramatically reduce cost.

 To reduce time requirements.

 To improve customer services dramatically.

 To reinvent the basic rules of the business e.g. The airline industry.

 Customer satisfaction.

 Organizational learning.

CHALLENGES FACED BY BPR PROCESS:

All the BPR processes are not as successful as described. The companies that have start the

use of BPR projects face many of the following challenges:

 Resistance

 Tradition

 Time requirements

 Cost

 Job losses

ADVANTAGES OF BPR:

Following are the advantages of BPR:

 BPR offers tight integration among different modules.

 It offers same views for the business i.e. same database, consistent reporting and

analysis.

 It offers process orientation facility i.e. streamline processes.

 It offers rich functionality like templates and reference models.

 It is flexible.

 It is scalable.

 It is expandable.

DISADVANTAGES OF BPR:

Following are the Disadvantages of BPR:

7

 It depends on various factors like size and availability of resources. So, it will not fit for

every business.

 It is not capable of providing an immediate resolution.

13.5 SOFTWARE RE- ENGINEERING

When we need to update the software to keep it to the current market, without

impacting its functionality, it is called software re-engineering. It is a thorough process where

the design of software is changed and programs are re-written.

Legacy software cannot keep tuning with the latest technology available in the market. As the

hardware become obsolete, updating of software becomes a headache. Even if software

grows old with time, its functionality does not.

For example, initially Unix was developed in assembly language. When language C came

into existence, Unix was re-engineered in C, because working in assembly language was

difficult.

Other than this, sometimes programmers notice that few parts of software need more

maintenance than others and they also need re-engineering.

Re-engineering is the reorganizing and modifying existing software systems to make

them more maintainable.

Objectives of Re-engineering:

 To describe a cost-effective option for system evolution.

 To describe the activities involved in the software maintenance process.

 To distinguish between software and data re-engineering and to explain the problems

of data re-engineering.

Steps involved in Re-engineering:

1. Inventory Analysis

2. Document Reconstruction

3. Reverse Engineering

4. Code Reconstruction

5. Data Reconstruction

6. Forward Engineering

8

FIGURE 13.3 Steps involved in Re-engineering

Re-engineering Cost Factors:

 The quality of the software to be re-engineered

 The tool support available for re-engineering

 The extent of the required data conversion

 The availability of expert staff for re-engineering

Advantages of Re-engineering:

 Reduced Risk: As the software already exists, the risk is less as compared to new

software development. Development problems, staffing problems and specification

problems are the lots of problems which may arise in new software development.

 Reduced Cost: The cost of re-engineering is less than the costs of developing new

software.

 Revelation of Business Rules: As a system is re-engineered, business rules that are

embedded in the system are rediscovered.

 Better use of Existing Staff: Existing staff expertise can be maintained and extended

accommodate new skills during re-engineering.

Disadvantages of Re-engineering:

 Practical limits to the extent of re-engineering.

9

 Major architectural changes or radical reorganizing of the systems data management

has to be done manually.

 Re-engineered system is not likely to be as maintainable as a new system developed

using modern software Re-engineering methods.

FIGURE 13.4 Steps involved in Re-engineering

RE-ENGINEERING PROCESS

Decide what to re-engineer. Is it whole software or a part of it?

Perform Reverse Engineering, in order to obtain specifications of existing software.

Restructure Program if required. Re-structure data as required. Apply Forward engineering

concepts in order to get re-engineered software.

13.6 REVERSE ENGINEERING

It is a process to achieve system specification by thoroughly analyzing, understanding

the existing system. This process can be seen as reverse SDLC model, i.e. we try to get

higher abstraction level by analyzing lower abstraction levels.

An existing system is previously implemented design, about which we know nothing.

Designers then do reverse engineering by looking at the code and try to get the design. With

design in hand, they try to conclude the specifications. Thus, reverse engineering is going in

reverse from code to system specification.

10

FIGURE 13.5 Steps involved in Reverse engineering

13.7 PROGRAM RESTRUCTURING

It is a process to re-structure and re-construct the existing software. It is all about re-

arranging the source code, either in same programming language or from one programming

language to a different one. Restructuring can have either source code-restructuring and data-

restructuring or both.

Re-structuring does not impact the functionality of the software but enhance reliability and

maintainability. Program components, which cause errors very frequently can be changed, or

updated with re-structuring.

The dependability of software on obsolete hardware platform can be removed via re-

structuring.

13.8 FORWARD ENGINEERING

Forward engineering is a process of obtaining desired software from the specifications

in hand which were brought down by means of reverse engineering. It assumes that there was

some software engineering already done in the past.

Forward engineering is same as software engineering process with only one difference – it is

carried out always after reverse engineering.

FIGURE 13.6 Steps involved in Forward-engineering

11

13.9 ECONOMICS OF REENGINEERING:

In a perfect world, every unmaintainable program would be retired immediately; to be

replaced by high-quality, reengineered applications developed using modern software

engineering practices. But we live in a world of limited resources. Reengineering drains

resources that can be used for other business purposes. Therefore, before an organization

attempts to reengineer an existing application, it should perform a cost/benefit analysis.

A cost/benefit analysis model for reengineering has been proposed by Sneed. Nine

parameters are defined:

P1 = current annual maintenance cost for an application.

P2 = current annual operation cost for an application.

P3 = current annual business value of an application.

P4 = predicted annual maintenance cost after reengineering.

P5 = predicted annual operations cost after reengineering.

P6 = predicted annual business value after reengineering.

P7 = estimated reengineering costs.

P8 = estimated reengineering calendar time.

P9 = reengineering risk factor (P9 = 1.0 is nominal).

L = expected life of the system.

The cost associated with continuing maintenance of a candidate application (i.e.,

reengineering is not performed) can be defined as

 Cmaint = [P3 - (P1 + P2)] x L

 L The costs associated with reengineering are defined using the following relationship:

 Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x P9)]

Using the costs presented in equations, the overall benefit of reengineering can be computed

as

 cost benefit = Creeng - Cmaint

The cost/benefit analysis presented in the equations can be performed for all high priority

applications identified during inventory analysis. Those application that show the highest

cost/benefit can be targeted for reengineering, while work on others can be postponed until

resources are available.

12

Cost of maintenance = cost annual of operation and maintenance over application lifetime

Cost of reengineering = predicted return on investment reduced by cost of implementing

changes and engineering risk factors

Cost benefit = Cost of reengineering - Cost of maintenance

13.10 CHECK YOUR PROGRESS

1. Maintenance is classified into how many categories?

a) Two

b) Four

c) Five

d) Three

2. The modification of the software to match changes in the ever changing environment,

falls under which category of software maintenance?

a) Corrective

b) Adaptive

c) Perfective

d) Preventive

3. The process of generating analysis and design documents is known as

a) Software engineering

b) Software re-engineering

c) Reverse engineering

d) Re-engineering

4. Which of the following is not a business goal of re-engineering?

a) Cost reduction

b) Time reduction

c) Maintainability

d) None of the mentioned

5. When one does decides to re-engineer a product?

a) When tools to support restructuring are disabled

b) When system crashes frequently

c) When hardware or software support becomes obsolete

d) Subsystems of a larger system require few maintenance

13

6. Which of the following is not an example of a business process?

a) Designing a new product

b) Hiring an employee

c) Purchasing services

d) Testing software

7. Reverse engineering of data focuses on

a) Internal data structures

b) Database structures

c) All of the mentioned

d) None of the mentioned

8. Reverse engineering techniques for internal program data focus on the definition of

classes of object

a) True b) False

Answers to check your progress:

1. Four

2. Adaptive

3. Reverse engineering

4. None of the mentioned

5. When hardware or software support becomes obsolete

6. Testing software

7. All of the mentioned

8. True

13.11 SUMMARY

The objective of re-engineering is to improve the system structure to make it easier to

understand and maintain. The re-engineering process involves source code translation,

reverse engineering, program structure improvement, program modularization and data re-

engineering. Source code translation is the automatic conversion of of program in one

language to another. Reverse engineering is the process of deriving the system design and

specification from its source code. Program structure improvement replaces unstructured

control constructs with while loops and simple conditionals. Program modularization

involves reorganization to group related items.

14

13.12 KEYWORDS

 Software maintenance: It is a process of modifying a software product after its delivery.

 BPR: Business Process Re-engineering

 Software re-engineering: It is a process where the design of software is changed and re

written.

 Reverse engineering: It is a process of achieve system specifications by thoroughly

analyzing and understanding the existing system.

 Program

 Program re-structuring: It is a process to re structure and re constructing the system

software.

13.13 QUESTIONS FOR SELF-STUDY

1. What is need maintenance and reengineering of software?

2. What are the 4 types of software maintenance?

3. Write a note on System re-engineering.

4. What is BPR software re-engineering?

5. What are the advantages and disadvantages BPR?

6. Write a note on Software Re-engineering.

7. What are the advantages and disadvantages Software Re-engineering?

8. Explain the following a) Reverse Engineering b)Forward Engineering C) program

Restricting

9. Write a note on Economics of Reengineering:

13.14 REFERENCES

1. Software Engineering, A Practitioner‘s Approach – 7
th

 Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering : Pearson New International Edition – Ian Sommerville, 2013

15

STRUCTURE

14.0 Objectives

14.1 Introduction

14.2 The SPI process

14.2.1 Assessment and gap analysis

14.2.2 Education and training

14.2.3 Selection and justification

14.2.4 Installation / Migration

14.2.5 Evaluation

14.2.6 Risk management for SPI

14.2.7 Critical Success factors

14.3 Process metric and software process improvement

14.4 The CMM

14.5 The CMMI

14.6 SPI Return on Investment

14.7 People CMM

14.8 Other SPI frameworks

14.9 SPI Trends

14.10 Check your progress

14.11 Summary

14.12 Key words

14.13 Questions for self-study

14.14 References

14.0 OBJECTIVES

After studying this unit, you will be able to:

 Explain the SPI process

 Understand the importance of software process improvements

 Study the relation of metrics and SPI

 Understand CMM and CMMI

 Differentiate between CMM and CMMI

UNIT-14: SOFTWARE PROCESS IMPROVEMENTS

16

14.1 INTRODUCTION

 In this unit, we are going to discuss about software process improvements. The term

software process improvement (SPI) indicates many things. First, it implies that elements of

an effective software process can be defined in an effective manner; second, that an existing

organizational approach to software development can be assessed against those elements; and

third, that a meaningful strategy for improvement can be defined. The SPI strategy transforms

the existing approach to software development into something that is more focused, more

repeatable, and more reliable (in terms of the quality of the product produced and the

timeliness of delivery). As SPI is not free, it must deliver a return on investment. The effort

and time that is required to implement an SPI strategy must pay for itself in some measurable

way. To do this, the results of improved process and practice must lead to a reduction in

software problems that cost time and money. It must reduce the number of defects that are

delivered to end users, reduce the amount of rework due to quality problems, reduce the costs

associated with software maintenance and support, and reduce the indirect costs that occur

when software is delivered late

Software Process Improvement (SPI) methodology is defined as a series of tasks, tools, and

techniques to plan and implement improvement activities to achieve specific goals such as

increasing development speed, achieving higher product quality or reducing costs.

Many software companies have turned to software process improvement as a way of

enhancing the quality of their software, reducing costs or accelerating their development

processes. Process improvement means understanding existing processes and changing these

processes to increase product quality and/or reduce costs and development time.

14.2 SPI PROCESS

 The difficult part of SPI is not defining the characteristics that define a high-quality

software process or the creation of a process maturity model. Those things are comparatively

easy than, establishing a consensus for initiating SPI and defining an ongoing strategy for

implementing it across a software organization.

The Software Engineering Institute has developed IDEAL— an organizational improvement

model that serves as a roadmap for initiating, planning, and implementing improvement actions.

IDEAL is representative of many process models for SPI, defining five distinct activities—

17

1. initiating

2. Diagnosing

3. Establishing

4. acting, and

5. learning—that guide an organization through SPI activities.

Pressman represents the above activities which applies a commonsense philosophy that requires

an organization to (1) look in the mirror, (2) then get smarter so it can make intelligent choices,

(3) select the process model (and related technology elements) that best meets its needs, (4)

instantiate the model into its operating environment and its culture, and (5) evaluate what has

been done. These five activities are applied in an iterative manner in an effort to foster

continuous process improvement.

14.2.1 ASSESSMENT AND GAP ANALYSIS

Stated simply, before you begin any journey, it‘s a good idea to know precisely where you are.

The first road-map activity, called assessment, allows you to get your bearings. The intent of

assessment is to uncover both strengths and weaknesses in the way the organization applies the

existing software process and the software engineering practices that populate the process.

Assessment examines a wide range of actions and tasks that will lead to a high quality process.

For instance, regardless of the process model that is chosen, the software organization must

establish generic mechanisms such as: defined approaches for customer communication;

established methods for representing user requirements; defining a project management

framework that includes scoping, estimation, scheduling, and project tracking; risk analysis

methods; change management procedures; quality assurance and control activities including

reviews; and many others.

Each is considered within the context of the framework that have been established and is

assessed to determine whether each of the following questions has been addressed:

 Is the objective of the action clearly defined?

 Are work products required as input and produced as output identified and described?

 Are the work tasks to be performed clearly described?

 Are the people who must perform the action identified by role?

 Have entry and exit criteria been established?

 Have metrics for the action been established?

18

 Are tools available to support the action?

 Is there an explicit training program that addresses the action?

 Is the action performed uniformly for all projects?

Although the questions noted imply a yes or no answer, the role of assessment is to look behind

the answer to determine whether the action in question is being performed in a manner that

would conform to best practice.

As the process assessment is conducted, we should also focus on the following attributes:

Consistency: Are important activities, actions, and tasks applied consistently across all software

projects and by all software teams?

Sophistication: Are management and technical actions performed with a level of sophistication

that implies a thorough understanding of best practice?

Acceptance: Is the software process and software engineering practice widely accepted by

management and technical staff?

Commitment: Has management committed the resources required to achieve consistency,

sophistication, and acceptance?

The difference between local application and best practice represents a GAP that offers

opportunities for improvement. The degree to which consistency, sophistication, acceptance, and

commitment are achieved indicates the amount of cultural change that will be required to achieve

meaningful improvement.

14.2.2 EDUCATION AND TRAINING

Many practitioners and managers do not know much about either subject. As a consequence,

inaccurate perceptions of process and practice lead to inappropriate decisions when an SPI

framework is introduced. It follows that a key element of any SPI strategy is education and

training for practitioners, technical managers and more senior managers who have direct contact

with the software organization. Three types of education and training should be conducted:

1. Generic concepts and methods Directed toward both managers and practitioners, this

category stresses both process and practice. The intent is to provide professionals with the

intellectual tools they need to apply the software process effectively and to make rational

decisions about improvements to the process.

19

2. Specific technology and tools: Directed primarily toward practitioners, this category

stresses technologies and tools that have been adopted for local use. For example, if UML

has been chosen for analysis and design modeling, a training curriculum for software

engineering using UML would be established.

3. Business communication and quality-related topics: Directed toward all stakeholders,

this category focuses on soft topics that help enable better communication among

stakeholders and foster a greater quality focus.

In a modern context, education and training can be delivered in a variety of different ways.

Everything from podcasts, to Internet-based training, to DVDs, to classroom courses can be

offered as part of an SPI strategy.

14.2.3 SELECTION AND JUSTIFICATION

 Once the initial assessment activity has been completed and education has begun, a

software organization should begin to make choices. These choices occur during a selection and

justification activity in which process characteristics and specific software engineering methods

and tools are chosen to populate the software process.

First, you should choose the process model that best fits your organization, its stakeholders, and

the software that you build. You should decide which of the set of framework activities will be

applied, the major work products that will be produced, and the quality assurance checkpoints

that will enable your team to assess progress. If the SPI assessment activity indicates specific

weaknesses (e.g., no formal SQA functions), you should focus attention on process

characteristics that will address these weaknesses directly.

Next, develop a work breakdown for each framework activity (e.g., modeling), defining the task

set that would be applied for a typical project. You should also consider the software engineering

methods that can be applied to achieve these tasks. As choices are made, education and training

should be coordinated to ensure that understanding is reinforced.

Ideally, everyone works together to select various process and technology elements and moves

smoothly toward the installation or migration activity. If the criteria for selection are established

by committee, people may argue endlessly about whether the criteria are appropriate and whether

a choice truly meets the criteria that have been established.

Once a choice is made, time and money must be expended to instantiate it within an

20

organization, and these resource expenditures should be justified.

14.2.4 INSTALLATION/MIGRATION

Installation is the first point at which a software organization feels the effects of changes

implemented as a consequence of the SPI road map. In some cases, an entirely new process is

recommended for an organization. Framework activities, software engineering actions, and

individual work tasks must be defined and installed as part of a new software engineering

culture. Such changes represent a substantial organizational and technological transition and

must be managed very carefully.

In other cases, changes associated with SPI are relatively minor, representing small, but

meaningful modifications to an existing process model. Such changes are often referred to as

process migration.

Installation and migration are actually software process redesign (SPR) activities. When a formal

approach to SPR is initiated, three different process models are considered: (1) the existing

process, (2) a transitional process, and (3) the target process. If the target process is significantly

different from the existing process, the only rational approach to installation is an incremental

strategy in which the transitional process is implemented in steps. The transitional process

provides a series of way-points that enable the software organization‘s culture to adapt to small

changes over a period of time.

14.2.5 EVALUATION

Although it is listed as the last activity in the SPI road map, evaluation occurs throughout SPI.

The evaluation activity assesses the degree to which changes have been instantiated and adopted,

the degree to which such changes result in better software quality or other tangible process

benefits, and the overall status of the process and the organizational culture as SPI activities

proceed.

Both qualitative factors and quantitative metrics are considered during the evaluation activity.

From a qualitative point of view, past management and practitioner attitudes about the software

process can be compared to attitudes polled after installation of process changes. Quantitative

metrics are collected from projects that have used the transitional or ―to be‖ process and

compared with similar metrics that were collected for projects that were conducted under the ―as

is‖ process.

21

14.2.6 RISK MANAGEMENT FOR SPI

SPI is a risky undertaking. In fact, more than half of all SPI efforts end in failure. The reasons for

failure vary greatly and are organizationally specific. Among the most common risks are: a lack

of management support, cultural resistance by technical staff, a poorly planned SPI strategy, an

overly formal approach to SPI, selection of an inappropriate process, a lack of buy-in by key

stakeholders, an inadequate budget, a lack of staff training, organizational instability, and a

myriad of other factors. The role of those chartered with the responsibility for SPI is to analyze

likely risks and develop an internal strategy for mitigating them.

A software organization should manage risk at three key points in the SPI process: prior to the

initiation of the SPI road map, during the execution of SPI activities (assessment, education,

selection, installation), and during the evaluation activity that follows the instantiation of some

process characteristic. In general, the following categories can be identified for SPI risk factors:

budget and cost, content and deliverables, culture, maintenance of SPI deliverables, mission and

goals, organizational management, organizational stability, process stakeholders, schedule for

SPI development, SPI development environment, SPI development process, SPI project

management, and SPI staff.

Within each category, a number of generic risk factors can be identified. For example, the

organizational culture has a strong bearing on risk. The following generic risk factors can be

defined for the culture category:

 Attitude toward change, based on prior efforts to change

 Experience with quality programs, level of success

 Action orientation for solving problems versus political struggles

 Use of facts to manage the organization and business

 Patience with change; ability to spend time socializing

 Tools orientation—expectation that tools can solve the problems

 Level of planfulness—ability of organization to plan

 Ability of organization members to participate with various levels of organization openly

at meetings

 Ability of organization members to manage meetings effectively

 Level of experience in organization with defined processes

Using the risk factors and generic attributes as a guide, risk exposure is computed in the

22

following manner:

Exposure = (risk probability) x (estimated loss)

14.2.7 CRITICAL SUCCESS FACTORS

The top five CSFs are presented in this section.

Management commitment and support: Like most activities that precipitate organizational and

cultural change, SPI will succeed only if management is actively involved. Senior business

managers should recognize the importance of software to their company and be active sponsors

of the SPI effort. Technical managers should be heavily involved in the development of the local

SPI strategy. Software process improvement is not feasible without investing time, money, and

effort. Management commitment and support are essential to sustain that investment.

Staff involvement: SPI cannot be imposed top down, nor can it be imposed from the outside. If

SPI efforts are to succeed, improvement must be organic—sponsored by technical managers and

senior technologists, and adopted by local practitioners.

Process integration and understanding: The software process does not exist in an organizational

vacuum. It must be characterized in a manner that is integrated with other business processes and

requirements. To accomplish this, those responsible for the SPI effort must have an intimate

knowledge and understanding of other business processes. In addition, they must understand the

as is software process and appreciate how much transitional change is tolerable within the local

culture.

A customized SPI strategy: There is no cookie-cutter SPI strategy. As I noted earlier in this

chapter, the SPI road map must be adapted to the local environment—team culture, product mix,

and local strengths and weak nesses must all be considered.

Solid management of the SPI project: It involves coordination, scheduling, parallel tasks,

deliverables, adaptation (when risks become realities), politics, budget control, and much more.

Without active and effective management, an SPI project is doomed to failure.

SPI mainly consists of 4 cyclic steps as shown in the figure below, while these steps can be

broken down into more steps according to the method and techniques used. While in most

cases the process will contain these steps.

23

Figure 14.1 Four cycle seps of SPI Process

CURRENT SITUATION EVALUATION

This step is the first step of the process and it is mainly to assess the current situation of the

software process by eliciting the requirements from the stakeholders, analyzing the current

artifacts and deliverables, and identifying the inefficiencies from the software process. The

elicitation can be conducted through different techniques, like, individual interviews, group

interview, use-case scenarios, and observations.

The key considerations in this phase, is to identify organization goals and ask the solution-

oriented questions. Identifying the proper measurement using, the GQM (Goal – Question –

Metric) techniques that will help in measuring the current status and measuring the

effectiveness of the improvement process.

IMPROVEMENT PLANNING

After analyzing the current situation and the improvement goals, the findings should be

categorized and prioritized according to which one is the most important or have the most

severity. We should observe what is the new target level of improvements should look like.

In this phase, the gap between the current level and the target level should be planned in terms

of a set of activities to achieve the target. These activities should be prioritized with the

alignment of the involved stakeholders and the organization goals, for example, if the project

is using the CMMI model, the target could be reaching maturity level 4 and the company at

level 3, in that case, the plan should be focused on the process areas and their activities which

is related to that level of improvement with the alignment of the organization goal.

24

IMPROVEMENT IMPLEMENTATION

In the third phase, the planned activities are executed and it puts the improvements into

practice and spreads it across the organization, what can be effective at the 2nd, 3rd, and 4th

step that planning and implementation could be an iterative way, for example, implementing

improvement for improving requirements first, then implementing the reduction for testing

process time, and so forth. This iterative way of implementation will help the organization to

realize the early benefits from the SPI program early or even adopt the plan if there is no real

impact measured from the improvement.

IMPROVEMENT EVALUATION

What is cannot be measured cannot be improved, so in this step, the impact measurement is

applied compared with the GQM. Measurement, in general, permits an organization to

compare the rate of actual change against its planned change and allocate resources based on

the gaps between actual and expected progress.

14.3 PROCESS METRICS AND SOFTWARE PROCESS IMPROVEMENT

One way to improve any process is to measure specific attributes of the process,

develop a set of meaningful metrics based on these attributes, and then use the metrics to

provide indicators that will lead to a strategy for improvement. Software metrics plays a vital

role on software process improvements. So process is one of the controllable factors in

improving software quality and organizational performance.

The personal software process (PSP) is a structured set of process descriptions, measurements,

and methods that can help engineers to improve their personal performance. It provides the

forms, scripts, and standards that help them estimate and plan their work. It shows them how

to define processes and how to measure their quality and productivity. A fundamental PSP

principle is that everyone is different and that a method that is effective for one engineer may

not be suitable for another. The PSP thus helps engineers to measure and track their own work

so they can find the methods that are best for them.

As an organization becomes more comfortable with the collection and use of process metrics,

the derivation of simple indicators gives way to a more rigorous approach called statistical

software process improvement (SSPI). In essence, SSPI uses software failure analysis to

collect information about all errors and defects encountered as an application, system, or

25

product is developed and used. Failure analysis works in the following manner:

1. All errors and defects are categorized by origin (e.g., flaw in specification, flaw in

logic, nonconformance to standards).

2. The cost to correct each error and defect is recorded

3. The number of errors and defects in each category is counted and ranked in

descending order.

4. The overall cost of errors and defects in each category is computed.

5. Resultant data are analyzed to uncover the categories that result in highest cost to

the organization.

6. Plans are developed to modify the process with the intent of eliminating (or

reducing the frequency of) the class of errors and defects that is most costly.

14.4 THE CMM (Capability Maturity Model)

Capability Maturity Model was developed by the Software Engineering Institute (SEI), a

research and development center sponsored by the U.S. Department of Defense (DOD) and now

part of Carnegie Mellon University. SEI was founded in 1984 to address software engineering

issues and, in a broad sense, to advance software engineering methodologies. More specifically,

SEI was established to optimize the process of developing, acquiring and maintaining heavily

software-reliant systems for the DOD. SEI advocates industry-wide adoption of the CMM

Integration (CMMI), which is an evolution of CMM. The CMM model is still widely used as

well.

CMM is similar to ISO 9001, one of the ISO 9000 series of standards specified by the

International Organization for Standardization. The ISO 9000 standards specify an effective

quality system for manufacturing and service industries; ISO 9001 deals specifically with

software development and maintenance.

The Capability Maturity Model is a method used to develop and process an organization's

software development process. The CMM model has five-level evolutionary path of

increasingly organized and systematically more mature processes.

 CMM is a framework that is used to analyze the approach and techniques followed by

any organization to develop software products.

 It also provides guidelines to further enhance the maturity of the process used to develop

those software products.

 It is based on profound feedback and development practices adopted by the most

26

successful organizations worldwide.

 This model describes a strategy for software process improvement that should be

followed by moving through 5 different levels.

 Each level of maturity shows a process capability level. All the levels except level-1 are

further described by Key Process Areas (KPA‘s).

Shortcomings of SEI/CMM:

It encourages the achievement of a higher maturity level in some cases by displacing the true

mission, which is improving the process and overall software quality. It only helps if it is put

into place early in the software development process. CMM has no formal theoretical basis

and in fact is based on the experience of very knowledgeable people. It does not have good

empirical support and this same empirical support could also be constructed to support other

models.

Key Process Areas (KPA’s):

Each of these KPA‘s defines the basic requirements that should be met by a software process

in order to satisfy the KPA and achieve that level of maturity. Conceptually, key process areas

form the basis for management control of the software project and establish a context in which

technical methods are applied, work products like models, documents, data, reports, etc. are

produced, milestones are established, quality is ensured and change is properly managed.

The five levels of CMM are as follows:

Figure 14.2 Five levels of CMM

Level-1: Initial –

 No KPA‘s defined.

 Processes followed are Adhoc and immature and are not well defined.

 Unstable environment for software development.

27

 No basis for predicting product quality, time for completion, etc.

Level-2: Repeatable –

 Focuses on establishing basic project management policies.

 Experience with earlier projects is used for managing new similar natured projects.

 Project Planning- It includes defining resources required, goals, constraints, etc. for

the project. It presents a detailed plan to be followed systematically for the successful

completion of good quality software.

 Configuration Management- The focus is on maintaining the performance of the

software product, including all its components, for the entire lifecycle.

 Requirements Management- It includes the management of customer reviews and

feedback which result in some changes in the requirement set. It also consists of

accommodation of those modified requirements.

 Subcontract Management- It focuses on the effective management of qualified

software contractors i.e. it manages the parts of the software which are developed by

third parties.

 Software Quality Assurance- It guarantees a good quality software product by

following certain rules and quality standard guidelines while developing.

Level-3: Defined –

 At this level, documentation of the standard guidelines and procedures takes place.

 It is a well-defined integrated set of project-specific software engineering and

management processes.

 Peer Reviews- In this method, defects is removed by using a number of review

methods like walkthroughs, inspections, buddy checks, etc.

 Intergroup Coordination- It consists of planned interactions between different

development teams to ensure efficient and proper fulfillment of customer needs.

 Organization Process Definition- Its key focus is on the development and

maintenance of the standard development processes.

 Organization Process Focus- It includes activities and practices that should be

followed to improve the process capabilities of an organization.

 Training Programs- It focuses on the enhancement of knowledge and skills of the

team members including the developers and ensuring an increase in work efficiency.

Level-4: Managed –

 At this stage, quantitative quality goals are set for the organization for software

products as well as software processes.

28

 The measurements made help the organization to predict the product and process

quality within some limits defined quantitatively.

 Software Quality Management- It includes the establishment of plans and strategies

to develop quantitative analysis and understanding of the product‘s quality.

 Quantitative Management- It focuses on controlling the project performance in a

quantitative manner.

Level-5: Optimizing –

 This is the highest level of process maturity in CMM and focuses on continuous

process improvement in the organization using quantitative feedback.

 Use of new tools, techniques, and evaluation of software processes is done to prevent

recurrence of known defects.

 Process Change Management- Its focus is on the continuous improvement of the

organization‘s software processes to improve productivity, quality, and cycle time for

the software product.

 Technology Change Management- It consists of the identification and use of new

technologies to improve product quality and decrease product development time.

 Defect Prevention- It focuses on the identification of causes of defects and prevents

them from recurring in future projects by improving project-defined processes.

14.5 THE CMMI

Capability Maturity Model Integration (CMMI) is a successor of CMM and is a more

evolved model that incorporates best components of individual disciplines of CMM like

Software CMM, Systems Engineering CMM, People CMM, etc. Since CMM is a reference

model of matured practices in a specific discipline, so it becomes difficult to integrate these

disciplines as per the requirements. This is why CMMI is used as it allows the integration of

multiple disciplines as and when needed.

Objectives of CMMI:

 Fulfilling customer needs and expectations.

 Value creation for investors/stockholders.

 Market growth is increased.

 Improved quality of products and services.

 Enhanced reputation in Industry.

29

CMMI Representation

CMMI has two types of representation, staged representation and continuous representation.

1. Staged Representation:

 Staged representation uses a pre-defined set of process areas to define improvement

path.

 It provides a sequence of improvements, where each part in the sequence serves as a

foundation for the next.

 It is an improved path is defined by maturity level.

 The maturity level describes the maturity of processes in organization.

 Staged CMMI representation allows comparison between different organizations for

multiple maturity levels.

2. Continuous Representation

 Allows selection of specific process areas.

 Continuous representation uses capability levels that measures improvement of an

individual process area.

 Continuous CMMI representation allows comparison between different organizations on

a process-area-by-process-area basis.

 It allows organizations to select processes which require more improvement.

 In this representation, order of improvement of various processes can be selected which

allows the organizations to meet their objectives and eliminate risks.

CMMI MODEL – MATURITY LEVELS:

In CMMI with staged representation, there are five maturity levels described as follows:

Maturity level 1: Initial

 Processes are poorly managed or controlled.

 Unpredictable outcomes of processes involved.

 Ad hoc and chaotic approach used.

 No KPAs (Key Process Areas) defined.

 Lowest quality and highest risk.

Maturity level 2: Managed

 At this level requirements are managed.

 Processes are planned and controlled.

30

 Projects are managed and implemented according to their documented plans.

 This risk involved is lower than Initial level, but still exists.

 Quality is better than Initial level.

Maturity level 3: Defined

 In the third level, processes are well characterized and described using standards, proper

procedures, and methods, tools, etc.

 Medium quality and medium risk involved.

 Focus is process standardization.

Maturity level 4: Quantitatively managed

 At this level quantitative objectives for process performance and quality are set.

 Quantitative objectives are based on customer requirements, organization needs, etc.

 Process performance measures are analyzed quantitatively.

 Higher quality of processes is achieved.

 lower risk

Maturity level 5: Optimizing

 Continuous improvement in processes and their performance.

 Improvement has to be both incremental and innovative.

 Highest quality of processes.

 Lowest risk in processes and their performance.

CMMI MODEL – CAPABILITY LEVELS

A capability level includes relevant specific and generic practices for a specific process area that

can improve the organization‘s processes associated with that process area. For CMMI models

with continuous representation, there are six capability levels as explained below:

Figure 14.3 Five levels of CMMI

31

Capability level 0: Incomplete

 Incomplete process – partially or not performed.

 One or more specific goals of process area are not met.

 No generic goals are specified for this level.

 This capability level is same as maturity level 1.

Capability level 1: Performed

 Process performance may not be stable.

 Objectives of quality cost and schedule may not be met.

 A capability level 1 process is expected to perform all specific and generic practices for

this level.

 Only a start-step for process improvement.

Capability level 2: Managed

 Process is planned, monitored and controlled.

 Managing the process by ensuring that objectives are achieved.

 Objectives are model and other including cost, quality, schedule.

 Actively managing processing with the help of metrics.

Capability level 3: Defined

 A defined process is managed and meets the organization‘s set of guidelines and

standards.

 Focus is process standardization.

Capability level 4: Quantitatively Managed

 Process is controlled using statistical and quantitative techniques.

 Process performance and quality is understood in statistical terms and metrics.

 Quantitative objectives for process quality and performance are established.

Capability level 5: Optimizing

 Focuses on continually improving process performance.

 Performance is improved in both ways – incremental and innovation.

 Emphasizes on studying the performance results across the organization to ensure that

common causes or issues are identified and fixed.

32

14.6 SPI RETURN ON INVESTMENT

Many organizations and firms invest in software process improvement (SPI). This is

to be done in order to satisfy business goals for customer satisfaction, time-to market, cost,

quality, and reliability. Return on investment (ROI) is a traditional approach for measuring

the business or monetary value of an investment.

It is important to note that ROI is a metric that can be used before and after an investment in

SPI. ROI can be used to evaluate (a priori) investment opportunities and make a proper

selection and ROI can be used to evaluate (a posteriori) the extent to which an investment

was legitimate.

ROI numbers are however useful as they can be used to:

• Convince strategic stakeholders to invest money and effort into SPI, and to convince them

that organizational performance issues can be solved through SPI.

• Estimate the amount of effort necessary to solve a certain problem, or estimating whether a

certain intended benefit is worth its cost.

• Decide how to prioritize software process improvements and which software processes to

improve first, as many organizations have severe timing and resource constraints.

• Decide whether to continue SPI initiatives and programs. SPI budgets are assigned and

discussed yearly, so if benefits are not made explicit and a sufficient ROI is not shown,

continuation is at risk.

• Simply survive, as any investment in an organization should be valued against its return. Or

else, it is very likely that money will be wasted and that there is risk of bankruptcy in the long

run.

ROI METRICS

ROI metrics are designed to measure the economic value of a new and improved software

process. Each ROI metric is a relevant indicator of how much a new and improved software

process is worth. We recommend only six basic metrics related to ROI, as shown in Figure

11.3. They are costs, benefits, benefit/cost ratio or B/CR, return on investment or ROI, net

present value or NPV, and break-even point or BEP.

33

Figure 14.4 ROI metrics

Each ROI metric builds upon its predecessor and refines the accuracy of the economic value

of a new software process. ROI metrics are not necessarily independent or mutually

exclusive. Each ROI metric must be considered individually. For example, costs may be

astronomical or benefits may be negligible, marginalizing the relevance of the other metrics.

Costs consist of the amount of money an organization has to pay in order to implement a SPI

method. Benefits generally consist of the amount of money saved by implementing a SPI

method. B/CR is a simple ratio of the amount of money saved implementing a new SPI

method to the amount of money consumed. ROI is also a ratio of money saved to money

consumed by a new SPI method expressed as a percentage. However, the ROI metric

demands that the costs of implementing the SPI method must first be subtracted from the

benefits.

14.7 PEOPLE CMM

A software process, no matter how well conceived, will not succeed without talented,

motivated software people. The People Capability Maturity Model is a roadmap for

implementing workforce practices that continuously improve the capability of an organization‘s

workforce. Developed in the mid-1990s and refined over the intervening years, the goal of the

People CMM is to encourage continuous improvement of generic workforce knowledge,

specific software engineering and project management skills, and process-related abilities.

Like the CMM, CMMI, and related SPI frameworks, the People CMM defines a set of five

organizational maturity levels that provide an indication of the relative sophistication of

workforce practices and processes. These maturity levels are tied to the existence within an

34

organization of a set of key process areas (KPAs). An overview of organizational levels and

related KPAs is shown in

Figure 14.1. People CMM complements any SPI framework by encouraging an organization to

nurture and improve its most important asset—its people. As important, it establishes a

workforce atmosphere that enables a software organization to attract, develop, and retain

outstanding talent.

FIGURE 14.5 Process areas for the People CMM

14.8 OTHER SPI FRAMEWORKS

SEI‘s CMM and CMMI are the most widely applied SPI frameworks; there are other

alternatives frameworks have been proposed and are in use. Among the most widely used of

these alternatives are:

• SPICE (Software Process Improvement and Capability dEtermination) —an international

initiative to support ISO‘s process assessment and life cycle process standards. The SPICE

model provides an SPI assessment framework that is compliant with ISO 15504:2003 and ISO

12207. The SPICE document suite presents a complete SPI framework including a model for

35

process management, guidelines for conducting an assessment and rating the process under

consideration, construction, selection, and use of assessment instruments and tools, and training

for assessors.

• ISO/IEC 15504 for (Software) Process Assessment.

• Bootstrap—an SPI framework for small and medium-sized organizations that conforms to

SPICE. The Bootstrap SPI framework has been developed to ensure conformance with the

emerging ISO standard for software process assessment and improvement (SPICE) and to align

the methodology with ISO 12207. The objective of Bootstrap is to evaluate a software process

using a set of software engineering best practices as a basis for assessment. Like the CMMI,

Bootstrap provides a process maturity level using the results of questionnaires that gather

information about the as is software process and software projects. SPI guidelines are based on

maturity level and organizational goals.

• PSP and TSP—individual and team-specific SPI frameworks, which focus on process in-the-

small, a more rigorous approach to software development coupled with measurement. Both PSP

and TSP emphasize the need to continuously collect data about the work that is being performed

and to use that data to develop strategies for improvement.

• TickIT—an auditing method that assesses an organization‘s compliance to ISO Standard

9001:2000. The Ticket auditing method ensures compliance with ISO 9001:2000 for Software—

a generic standard that applies to any organization that wants to improve the overall quality of

the products, systems, or services that it provides. Therefore, the standard is directly applicable

to software organizations and companies.

14.9 SPI TRENDS

Over the past two decades, many companies have attempted to improve their software

engineering practices by applying an SPI framework to effect organizational change and

technology transition.

David Rico reports that a typical application of an SPI framework such as the SEI CMM can

cost between $25,000 and $70,000 per person and take years to complete! It should come as no

surprise that the future of SPI should emphasize a less costly and time-consuming approach. To

be effective in the twenty-first century world of software development, future SPI frameworks

must become significantly more agile. Rather than an organizational focus, which can take years

to complete successfully, contemporary SPI efforts should focus on the project level, working to

36

improve a team process in weeks, not months or years. To achieve meaningful results (even at

the project level) in a short time frame, complex framework models may give way to simpler

models. Any attempt at SPI demands a knowledgeable workforce, but education and training

expenses can be expensive and should be minimized and streamlined. Future SPI efforts should

rely on Web-based training that is targeted at pivotal practices. The frameworks and models that

have been developed represent substantial intellectual assets for the software engineering

community. But like all things, these assets guide future attempts at SPI not by becoming a

recurring dogma, but by serving as the basis for better, simpler, and more agile SPI models.

14.10 CHECK YOUR PROGRESS

1. What are the goals of SPI?

2. Understanding existing process and changing these process to increase quality and

reduce cost and development time is called____________.

3. ___________ helps the engineers to measure and track their own work.

4. The CMM model has ___ level of evolutionary path.

5. ____is a metric that can be used before and after an investment in SPI.

Answers to check your progress

1. i. Increase development speed

ii. Achieve high quality product

iii. Reduce cost

2. Process improvement

3. Personal software process (PSP)

4. Five

5. ROI

14.11 SUMMARY

A software process improvement framework defines the characteristics that must be

present if an effective software process is to be achieved, an assessment method that helps

determine whether those characteristics are present, and a strategy for assisting a software

organization in implementing those process characteristics that have been found to be weak or

missing. Regardless of the constituency that sponsors SPI, the goal is to improve process quality

and, as a consequence, improve software quality and timeliness. A process maturity model

37

provides an overall indication of the process maturity exhibited by a software organization. It

provides a qualitative feel for the relative effectiveness of the software process that is currently

being used.

The SPI road map begins with assessment— a series of evaluation activities that uncover both

strengths and weaknesses in the way the organization applies the existing software process and

the software engineering practices that populate the process. As a consequence of assessment, a

software organization can develop an overall SPI plan. One of the key elements of any SPI plan

is education and training, an activity that focuses on improving the knowledge level of managers

and practitioners. Once staff becomes well versed in current software technologies, selection and

justification commence. These tasks lead to choices about the architecture of the software

process, the methods that populate it, and the tools that support it. Installation and evaluation are

SPI activities that instantiate process changes and assess their efficacy and impact.

To successfully improve its software process, an organization must exhibit the following

characteristics: management commitment and support for SPI, staff involvement throughout the

SPI process, process integration into the overall organizational culture, an SPI strategy that has

been customized for local needs, and solid management of the SPI project. A number of SPI

frameworks are in use today. The SEI‘s CMM and CMMI are widely used. The People CMM

has been customized to assess the quality of the organizational culture and the people who

populate it. SPICE, Bootstrap, PSP, TSP, and TickIT are additional frameworks that can lead to

effective SPI.

SPI is hard work that requires substantial investment of dollars and people. To ensure that a

reasonable return on investment is achieved, an organization must measure the costs associated

with SPI and the benefits that can be directly attributed to it.

14.12 KEYWORDS

 SPI: Is a methodology defined as a series of tasks, tools and techniques to implement

improvement activities.

 SSPI: Statistical Software Process Improvement.

 SEI: Software Engineering Institute is a research and develop center.

 CMM: Is a method used to develop and process organization software develops process.

 CMMI: Is a successor of CMM.

 ROI: Is a traditional approach for measuring the business or monetary of an ROI.

38

14.13 QUESTIONS FOR SELF STUDY

1. Define SPI in your own words?

2. What is process improvement?

3. Discuss SPI process.

4. Explain assessment and gap analysis.

5. Elaborate the role of education and training in the SPI.

6. Discuss the risk management for SPI.

7. What are the four cycles of SPI process and explain each stage.

8. What is SSPI? How it is used?

9. Discuss CMM model.

10. What is CMMI? What are its types of representation?

11. Discuss ROI metric.

12. Examine other SPI frameworks.

13. Review people CMM.

14. Explain SPI trends.

14.14 REFERENCES

1. Software Engineering, A Practitioner‘s Approach – 7
th

 Edition, Roger S.Pressman

2. Software Project Management in Practice – Pankaj Jalote

3. Software Engineering : Pearson New International Edition – Ian Sommerville, 2013

39

STRUCTURE

15.0 Objectives

15.1 Introduction

15.2 Technology Evolution

15.3 Identifying Soft Trends

15.4 Technology Directions

15.5 Tools Related Trends

15.6 Agile Project Management

15.7 Check your progress

15.8 Summary

15.9 Key words

15.10 Questions for self-study

15.11 References

15.0 OBJECTIVES

After studying this unit, you will be able to:

 Discuss about Emergent requirements and why do they present a challenge to

software engineers

 Explain different stages in a technology‘s life cycle

 Identify soft and hard trends.

 Describe how to Manage the Complexity

 Discuss about technology evolution and its directions

 Describe model driven and test driven software

15.1 INTRODUCTION

 In this unit, we are going to discuss about emerging trends in software engineering.

Unlike ‗Engineering industries‘, software industry is about 50 years old, practitioners and

researchers have developed an array of process models, technical methods, and automated

tools in an effort to foster fundamental change in the way we build computer software.

However, past experience indicates that there is a tacit desire to find the ―silver bullet‖ the

magic process or transcendent technology that will allow us to build large, complex,

UNIT-15: EMERGING TRENDS IN SOFTWARE ENGINEERING

40

software-based systems easily, without confusion, without mistakes, without delay, without

many problems. No one can predict the future with absolute certainty, but it is possible to

assess trends in the software engineering area and from those trends to suggest possible

directions for the technology.

15.2 TECHNOLOGY EVOLUTION

Ray Kurzweil argues that technological evolution is similar to biological evolution,

but occurs at a rate that is orders of magnitude faster. Evolution (whether biological or

technological) occurs as a result of positive feedback—―the more capable methods resulting

from one stage of evolutionary progress are used to create the next stage‖. The big questions

for the twenty-first century are: (1) how rapidly does a technology evolve? (2) How

significant are the effects of positive feedback. (3) How profound will the resultant changes

be?

Fig 15.2.1: A technology innovation life cycle

When a successful new technology is introduced, the initial concept moves through a

reasonably predictable ―innovation life cycle‖ illustrated in Figure 15.2.1.

 In the breakthrough phase, a problem is recognized and repeated attempts at a viable

solution are attempted. At some point, a solution shows promise.

 The initial breakthrough work is reproduced in the replicator phase and gains wider

usage.

 Empiricism leads to the creation of empirical rules that govern the use of the

technology

 Repeated success leads to a broader theory of usage

 Then creation of automated tools during the automation phase.

 Finally, the technology matures and is used widely.

41

Many research and technology trends never reach maturity. In fact, the vast majority of

―promising‖ technologies in the software engineering domain receives widespread interest for

a few years and then fall into niche usage by a dedicated band of adherents. This is not to say

that these technologies lack merit, but rather to emphasize that the journey through the

innovation life cycle is long and hard.

Computing technologies evolve through an ―S-curve‖ that exhibits

 relatively slow growth during the technology‘s formative years

 rapid acceleration during its growth period

 and then a leveling-off period as the technology reaches its limits.

But computing and other related technologies have exhibited explosive (exponential) growth

during the central stages shown in Figure 15.2.1 and will continue to do so.

Today, we are at the knee of the S-curve for modern computing technologies—at the

transition between early growth and the explosive growth that is to follow. The implication is

that over the next 20 to 40 years, we will see dramatic (even mind-boggling) changes in

computing capability. The coming decades will result in order-of-magnitude changes in

computing speed, size, capacity, and energy consumption (to name only a few

characteristics).

Within 20 years, technology evolution will accelerate at an increasingly rapid pace,

ultimately leading to an era of non-biological intelligence that will merge with and extend

human intelligence in ways that are fascinating to contemplate.

By the year 2040, a combination of extreme computation, nanotechnology, massively high

bandwidth ubiquitous networks, and robotics will lead us into a different world.

OBSERVING SOFTWARE ENGINEERING TRENDS

Software engineers face the often formidable challenges of dealing with rapid change,

uncertainty and emergence, dependability, diversity, and interdependence, but they also have

opportunities to make significant contributions that will make a difference for the better.

The ―soft trends‖ have a significant impact on the overall direction of software engineering.

But other (―harder‖) research and technology-oriented trends remain important. Technology

trends occur when research trends are extrapolated to meet industry needs and are shaped by

market-driven demand.

A consultancy that studies technology trends across many industries—has developed a hype

cycle for emerging technologies, represented in Fig 15.3.1.

42

The Hype Cycle: The hype cycle is a graphical representation of the life cycle stages a

technology goes through from conception to maturity and widespread adoption. The

hype cycle is a branded tool created by Gartner, an information technology (IT) research and

Consultancy Company.

However, the hype cycle‘s stages are often used as reference points in marketing and

technology reporting. Businesses can use the hype cycle to guide technology decisions in

accordance with their level of comfort with risk. Each stage of the cycle is associated with its

own risks and opportunities. The hype cycle identifies five overlapping stages in a

technology‘s life cycle as shown in Fig 15.3.1

1. Technology Trigger: In this stage, a technology is conceptualized. There may

be prototypes but there are often no functional products or market studies. The potential

spurs media interest and sometimes proof-of-concept demonstrations are available at this

stage.

2. Peak of Inflated Expectations: The technology is implemented, especially by early

adopters. There is a lot of publicity about both successful and unsuccessful

implementations.

3. Trough of Disillusionment: Flaws and failures lead to some disappointment in the

technology. Some producers are unsuccessful or drop their products. Continued

investments in other producers are contingent upon addressing problems successfully.

4. Slope of Enlightenment: The technology‘s potential for further applications becomes

more broadly understood and an increasing number of companies implement or test it in

their environments. Some producers create further generations of products.

5. Plateau of Productivity: The technology becomes widely implemented; its place in the

market and its applications are well-understood. Standards arise for evaluating technology

providers.

15.3.1: Various stages of Hype cycle

https://www.techtarget.com/searcherp/definition/prototype
https://www.techtarget.com/searchcio/definition/proof-of-concept-POC

43

15.3 IDENTIFYING SOFT TRENDS

Each nation with a substantial IT industry has a set of unique characteristics that

define the manner in which business is conducted, the organizational dynamics that arise

within a company, the distinct marketing issues that apply to local customers, and the

overriding culture that dictates all human interaction. However, some trends in each of these

areas are universal and have as much to do with sociology, anthropology, and group

psychology (often referred to as the ―soft sciences‖) as they do with academic or industrial

research. Hard trends are the technical aspects of next generation software intensive systems.

It shows the technical directions that software engineering process, methods and tools will

take.

a) Connectivity and collaboration (enabled by high bandwidth communication) has already

led to a software team that does not occupy the same physical space (telecommuting and part-

time employment in a local context). One team collaborates with other teams that are

separated by time zones, primary language, and culture. Software engineering must respond

with an overarching process model for ―distributed teams‖ that is agile enough to meet the

demands of immediacy but disciplined enough to coordinate disparate groups.

b) Globalization leads to a diverse workforce (in terms of language, culture, problem

resolution, management philosophy, communication priorities, and person-to-person

interaction). Different teams (in different countries) must respond to engineering problems in

a way that best accommodates their unique needs, while at the same time fostering a level of

uniformity that allows a global project to proceed. This type of organization suggests fewer

levels of management and a greater emphasis on team-level decision making. It can lead to

greater agility, but only if communication mechanisms have been established so that every

team can understand project and technical status (via networked groupware) at any time.

c) An aging population implies that many experienced software engineers and managers will

be leaving the field over the coming decade. Viable mechanisms are needed that can capture

the knowledge of these aging managers and technologies. In other regions of the world, the

number of young people available to the software industry is exploding. This provides an

opportunity to mold a software engineering culture without the burden of 50 years of ―old-

school‖ prejudices.

44

d) Consumer spending in emerging economies will double to well over $9 trillion. Some of

this spending will be applied to products and services that have a digital component that are

software-based or software-driven.

e) People and Teams

 i) As systems grow in size, teams grow in number, geographical distribution, and culture.

ii) As systems grow in complexity, team interfaces become pivotal to success.

iii) As systems become pervasive, teams must manage emergent requirements.

iv) As systems become more open, what is a team?

Finally, human culture itself will impact the direction of software engineering. Every

generation establishes its own imprint on local culture, and yours will be no different.

According to well-known consultant who specializes in cultural trends, characterizes them in

the following manner: ―Our Trends are not fads. Our Trends endure. Our Trends evolve.

They represent underlying forces, first causes, basic human needs, attitudes, aspirations. They

help us navigate the world, understand what‘s happening and why, and prepare for what is

yet to come.‖ A detailed discussion of how modern cultural trends will have an impact on

software engineering is best left to those who specialize in the ―soft sciences.‖

15.3.1 MANAGING COMPLEXITY

In the relatively near future, systems requiring over 1 billion lines of source code (LOC) will

begin to emerge.

a) Consider the interfaces for a billion LOC system to the outside world,to other interoperable

systems, to the Internet (or its successor), and to the millions of internal components that

must all work together to make this computing monster operate successfully. Is there a

reliable way to ensure that all of these connections will allow information to flow properly?

b) Consider the number of people (and their locations) who will be doing the work, the

coordination of people and technology, the unrelenting flow of changes, the likelihood of a

multiplatform, multi operating system environment. Is there a way to manage and coordinate

people who are working on a monster project?

c) Consider the engineering challenge. How can we analyze tens of thousands of

requirements, constraints, and restrictions in a way that ensures that inconsistency and

ambiguity, omissions, and outright errors are uncovered and corrected? How can we create a

design architecture that is robust enough to handle a system of this size? How can software

45

engineers establish a change management system that will have to handle hundreds of

thousands of changes?

d) Consider the challenge of quality assurance. How can we perform verification and

validation in a meaningful way? How do you test a 1 billion LOC system?

In the early days, software engineers attempted to manage complexity in what can only be

described as an ad hoc fashion. Today, we use process, methods, and tools to keep

complexity under control.

15.3.2 OPEN-WORLD SOFTWARE

 Software that is designed to adapt to a continually changing environment ‗by self-

organizing its structure and self-adapting its behavior.

 Concepts such as ambient intelligence, context-aware applications, and

pervasive/ubiquitous computing all focus on integrating software-based systems into

an environment far broader than anything to date.

 Today‘s pervasive computing contains device mobility and ad hoc networking and

simple context awareness. Soon smart objects implemented in devices that have the

potential to communicate with one another also evolve.

 Over the next decade, mobile user profiles that can be recognized by other objects and

smart objects will respond to other objects based on situational characteristic.

It should be obvious that significant privacy and security issues come into play. A ―trust

management system‖ will manage privileges that enable communication with networks,

health, entertainment, financial, employment, and personal systems.

New capable systems will be added to the network constantly, each providing useful

capabilities and demanding access to your P-com. Therefore, the P-com software must be

designed so that it can adapt to the requirements that emerge.

15.3.3 EMERGENT REQUIREMENTS

Requirements will emerge as everyone involved in the engineering and construction of a

complex system learns more about it, the environment in which it is to reside, and the users

who will interact with it.

 First, process models must be designed to embrace change and adopt the basic tenets

of the agile philosophy.

46

 Next, methods that yield engineering models (e.g., requirements and design models)

must be used judiciously because those models will change repeatedly as more

knowledge about the system is acquired.

 Finally, tools that support both process and methods must make adaptation and

change easy.

As the number of changes grows, the likelihood of unintended side effects also grows. This

should be a cause for concern as complex systems with emergent requirements become the

norm.

15.3.4 THE TALENT MIX

Each software team must bring a variety of creative talent and technical skills to its part of a

complex system, and the overall process must allow the output of these islands of talent to

merge effectively.

15.3.5 SOFTWARE BUILDING BLOCKS

All of us who have fostered a software engineering philosophy have emphasized the need for

reuse—of source code, object-oriented classes, components, patterns, and COTS software.

Although the software engineering community has made progress as it attempts to capture

past knowledge and reuse proven solutions, a significant percentage of the software that is

built today continues to be built ―from scratch.‖ Part of the reason for this is a continuing

desire (by stakeholders and software engineering practitioners) for ―unique solutions.‖

In the hardware world, original equipment manufacturers (OEMs) of digital devices use

application-specific standard products (ASSPs) produced by silicon vendors almost

exclusively.

One advantage of the use of software components is that the OEM can leverage the

functionality provided by the software without having to develop in-house expertise in the

specific functions or invest developer time on the effort to implement and validate the

components. Other advantages include the ability to acquire and deploy only the specific set

of functionalities that are needed for the system, as well as the ability to integrate these

components into an already-existing architecture.

However, the software component approach does have a disadvantage in that there is a given

level of effort required to integrate the individual components into the overall product. This

integration challenge may be further complicated if the components are sourced from a

variety of vendors, each with its own interface methodologies. As additional sources of

47

components are used, the effort required managing various vendors‘ increases, and there is a

greater risk of encountering problems related to the interaction across components from

different sources.

15.3.6 CHANGING PERCEPTIONS OF ―VALUE‖

When computer software is considered, the modern perception of value is changing from

business value (cost and profitability) to customer values that include: speed of delivery,

richness of functionality, and overall product quality.

15.3.7 OPEN SOURCE

Open source is a development method for software that harnesses the power of distributed

peer review and transparency of process.

The advantages of open source is

 better quality,

 higher reliability,

 more flexibility,

 lower cost,

 An end to predatory vendor lock-in.

The term open source when applied to computer software, implies that software engineering

work products (models, source code, test suites) are open to the public and can be reviewed

and extended (with controls) by anyone with interest and permission.

An open-source ―team‖ may have a number of full-time ―dream team‖ members, but the

number of people working on the software expands and contracts as interest in the application

strengthens or weakens. The power of the open-source team is derived from constant peer

review and design/code refactoring that results in a slow progression toward an optimal

solution.

15.4 TECHNOLOGY DIRECTIONS

Software engineering is about far more than technology—it‘s about people and their

ability to communicate their needs and innovate to make those needs a reality. Whenever

people are involved, change occurs slowly in fits and starts. It‘s only when a ―tipping point‖

is reached, that a technology cascades across the software engineering community and broad-

based change truly does occur.

48

A few trends in process, methods, and tools that are likely to have some influence on

software engineering over the next decade are listed below.

15.4.1 PROCESS TRENDS

Possible process trends over the next decade are

a) SPI frameworks - will emphasize ―strategies that focus on goal orientation and product

innovation.‖ A stable, step-by-step road map for SPI may have to be replaced with a

framework that emphasizes short-term goals that have a product orientation. If the

requirements for a new software-based product line will emerge over a series of

incremental product releases (to be delivered to end users via the Web) the software

organization may recognize the need to improve its ability to manage change. Process

improvements associated with change management must be coordinated with the release

cycle of the product in a way that will improve change management while at the same

time not being disruptive.

b) Process changes will be driven by the needs of practitioners and should start from the

bottom up. By focusing SPI efforts narrowly and working from the bottom up,

practitioners will begin to see substantive changes early. Change that makes real

difference in the way that, the software engineering works is conducted.

c) Greater emphasis will be placed on the return-on investment of SPI activities

d) Expertise in sociology and anthropology may have as much or more to do with successful

SPI as other, more technical disciplines. SPI changes organizational culture and cultural

change involves individuals and groups of people. Much can be learned by examining the

sociology of groups to better understand effective ways to introduce change.

e) New modes of learning may facilitate the transition to a more effective software process.

In this context, ―learning‖ implies learning from successes and mistakes. A software

organization that collects metrics allows itself to understand how elements of a process

affect the quality of the end product.

f) Automated software process technology (SPT) will move away from global process

management (broad based support of the entire software process) to focus on those

aspects of the software process that can best benefit from automation.

49

15.4.2 THE GRAND CHALLENGE

There is one trend that is undeniable software-based systems will undoubtedly become bigger

and more complex as time passes. It is the engineering of these large, complex systems,

regardless of delivery platform or application domain, the poses the ―grand challenge‖ for

software engineers. New approaches are created to understanding system models and using

those models as a basis for the construction of high-quality next generation software.

As the software engineering community develops new model-driven approaches to the

representation of system requirements and design, the following characteristics must be

addressed:

a) Multi-functionality—as digital devices evolve into their second and third generation,

they have begun to deliver a rich set of sometimes unrelated functions. The mobile phone,

once considered a communication device, is now used for taking photos, keeping a

calendar, navigating a journey, and as a music player. If open-world interfaces come to

pass, these mobile devices will be used for much more over the coming years.

b) Reactivity and timeliness—digital devices increasingly interact with the real world and

must react to external stimuli in a timely manner. They must interface with a broad array

of sensors and must respond in a time frame that is appropriate to the task at hand. New

methods must be developed that

1. Help software engineers predict the timing of various reactive features.

2. Implement those features in a way that makes the feature less machine dependent and

more portable.

c) New modes of user interaction—the keyboard and mouse work well in a PC

environment, but open-world trends for software mean that new modes of interaction

must be modeled and implemented. Whether these new approaches use multitouch

interfaces, voice recognition, or direct mind interfaces, new generations of software for

digital devices must model these new human-computer interfaces.

d) Complex architectures—a luxury automobile has over 2000 functions controlled by

software that resides within a complex hardware architecture that includes multiple CPUs,

a sophisticated bus structure, actuators, sensors, an increasingly sophisticated human

interface, and many safety-rated components. Even more complex systems are on the

immediate horizon, presenting significant challenges for software designers.

50

e) Heterogeneous, distributed systems—the real-time components of any modern

embedded system can be connected via an internal bus, a wireless network, or across the

Internet (or all three).

f) Criticality—software has become the pivotal component in virtually all business-critical

systems and in most safety-critical systems. Yet, the software engineering community has

only begun to apply even the most basic principles of software safety.

g) Maintenance variability—the life of software within a digital device rarely lasts beyond

3 to 5 years, but the complex avionics systems within an aircraft has a useful life of at

least 20 years. Software characteristics can be managed only if the software engineering

community develops

1. A more effective distributed and collaborative software engineering philosophy

2. Better requirements engineering approaches

3. A more robust approach to model-driven development

4. Better software tools.

15.4.3 COLLABORATIVE DEVELOPMENT

Today, software engineers collaborate across time zones and international boundaries, and

every one of them must share information. The challenge over the next decade is to develop

methods and tools. They identify a number of success factors that lead to successful

collaborative efforts:

a. Shared goals —project goals must be clearly enunciated, and all stakeholders must

understand them and agree with their intent.

b. Shared culture —cultural differences should be clearly defined, and an educational

approach (that will help to mitigate those differences) and a communication

approach (that will facilitate knowledge transfer) should be developed.

c. Shared process —in some ways, process serves as the skeleton of a collaborative

project, providing a uniform means for assessing progress and direction and

introducing a common technical ―language‖ for all team members.

d. Shared responsibility—every team member must recognize the importance of

requirements engineering and work to provide the best possible definition of the

system.

51

15.4.4 REQUIREMENT ENGINEERING

The success or failure of these actions has a very strong influence on the success or failure of

the entire software engineering process. Software requirements have a tendency to keep

changing, and with the advent of open-world systems, emergent requirements (and near-

continuous change) may become the norm.

Today, most ―informal‖ requirements engineering approaches begin with the creation of user

scenarios (e.g., use cases). More formal approaches create one or more requirements models

and use these as a basis for design. Formal methods enable a software engineer to represent

requirements using a verifiable mathematical notation. All can work reasonably well when

requirements are stable, but do not readily solve the problem of dynamic or emergent

requirements.

There are a number of distinct requirements engineering research directions. They are

 Natural language processing from translated textual descriptions into more

structured representations (e.g., analysis classes)

 Greater reliance on databases for structuring and understanding software

requirements

 The use of RE patterns to describe typical problems and solutions when

requirements engineering tasks are conducted

 Goal-oriented requirements engineering.

To improve the manner in which requirements are defined, the software engineering

community will likely implement three distinct sub processes as RE is conducted:

(1) Improved knowledge acquisition and knowledge sharing that allows more complete

understanding of application domain constraints and stakeholder needs,

(2) Greater emphasis on iteration as requirements are defined, and

(3) More effective communication and coordination tools that enable all stakeholders to

collaborate effectively

The RE sub processes will only succeed if they are properly integrated into an evolving

approach to software engineering. As pattern-based problem solving and component-based

solutions begin to dominate many application domains, RE must accommodate the desire for

agility and the inherent emergent requirements that result. The concurrent nature of many

52

software engineering process models means that RE will be integrated with design and

construction activities.

As a consequence, the notion of a static ―software specification‖ is beginning to disappear, to

be replaced by ―value driven requirements‖ derived as stakeholders respond to features and

functions delivered in early software increments.

15.4.5 MODEL-DRIVEN SOFTWARE DEVELOPMENT

Model-driven software development couples domain-specific modeling languages with

transformation engines and generators in a way that facilitates the representation of

abstraction at high levels and then transforms it into lower levels

Domain-specific modeling languages (DSMLs) represent ―application structure, behavior

and requirements within particular application domains‖ described with meta-models that

―define the relationships among concepts in the domain and precisely specify the key

semantics and constraints associated with these domain concepts.

15.4.6 POSTMODERN DESIGN

As the design of software components moves closer to algorithmic detail, a designer begins

to represent the component at a level of abstraction that is close to code. Postmodern design

will continue to emphasize the importance of software architecture. A designer must state an

architectural issue, make a decision that addresses the issue, and then clearly define the

assumptions, constraints, and implications that the decision places on the software as a whole.

Aspect-oriented software development or model-driven software development may become

important design approaches in the years ahead.

15.4.7 TEST-DRIVEN DEVELOPMENT

Requirements for a software component serve as the basis for the creation of a series of test

cases that exercise the interface and attempt to find errors in the data structures and

functionality delivered by the component. TDD is not really a new technology but rather a

trend that emphasizes the design of test cases before the creation of source code.

The TDD process follows the simple procedural flow illustrated in Fig 15 4.7.1

 Before the first small segment of code is created, a software engineer creates a test to

exercise the code (to try to make the code fail).

 The code is then written to satisfy the test.

53

 If it passes, a new test is created for the next segment of code to be developed.

 The process continues until the component is fully coded and all tests execute without

error.

 If any test succeeds in finding an error, the existing code is refactored (corrected) and

all tests created to that point are re-executed.

 This iterative flow continues until there are no tests left to be created, implying that

the component meets all requirements defined for it.

Fig 15. 4.7.1 Test-driven development process flow

During TDD, code is developed in very small increments (one sub function at a time), and no

code is written until a test exists to exercise it. Each iteration results in one or more new tests

that are added to a regression test suite that is run with every change. This is done to ensure

that the new code has not generated side effects that cause errors in the older code.

In TDD, tests drive the detailed component design and the resultant source code. The results

of these tests cause immediate modifications to the component design (via the code), and

more important, the resultant component (when completed) has been verified in stand-alone

fashion.

54

15.5 TOOLS RELATED TRENDS

Hundreds of industry-grade software engineering tools are introduced each year.

 The majority is provided by tools vendors who claim that their tool will improve

project management, or requirements analysis, or design modeling, or code

generation, or testing, or change management, or any of the many software

engineering activities, actions, and tasks.

 Other tools have been developed as open-source offerings. The majority of open-

source tools focus on ―programming‖ activities with a specific emphasis on the

construction activity (particularly code generation).

 Other tools grow out of research efforts at universities and government labs.

 At the industry level, the most comprehensive tools packages form software

engineering environments that integrate a collection of individual tools around a

central database (repository).

When considered as a whole, an SEE integrates information across the software process and

assists in the collaboration that is required for many large, complex software-based systems.

There is also a substantial time lag between the introduction of new technology solutions

(e.g., model-driven software development) and the availability of viable SEEs that support

the new technology.

15.5.1 TOOLS THAT RESPOND TO SOFT TRENDS

The soft trends need to manage complexity, accommodate emergent requirements, establish

process models that embrace change, coordinate global teams with a changing talent mix,

among others—suggest a new era in which tools support for stakeholder collaboration will

become as important as tools support for technology.

A collaborative SEE ―supports co-operation and communication among software engineers

belonging to distributed development teams involved in modeling, controlling, and measuring

software development and maintenance processes.

One example of research in this area is GENESIS—a generalized, open-source environment

designed to support collaborative software engineering work. Figure 15.5.1 illustrates

architecture for a collaborative SEE.

55

Fig 15.5.1 Collaborative SEE architecture

The architecture, based on the GENESIS environment, is constructed of subsystems that are

integrated within a common Web client and is complemented by server-based components

that provide support for all clients. Each development organization has its own client-side

subsystems that communicate to other clients. The functions of the client-side components

are as follows

 A resource management subsystem manages the allocation of human resources to

different projects or subprojects;

 A work product management system is ―responsible for the creation, modification,

deletion,‖ indexing, searching, and storage of all software engineering work products.

 A workflow management subsystem coordinates the definition, instantiation, and

implementation of software process activities, actions, and tasks;

 An event engine ―collects events‖ that occur during the software process (e.g., a

successful review of a work product, the completion of unit testing of a component) and

notifies others;

 A communication system supports both synchronous and asynchronous

communication among the distributed teams.

56

On the server side, four components share a workflow support database. The components

implement the following functions:

 Process definition—a tool set that enables a team to define new process activities,

actions, or tasks and defines the rules that govern how these process elements interact

with one another and the work products they produce.

 Project management—a tool set that allows the team to build a project plan and

coordinate the plan with other teams or projects.

 Workflow engine—―interacts with the event engine to propagate events that are

relevant for the execution of cooperating processes executed on other sites‖.

 Worklist handler—interacts with the server-side database to provide a software

engineer with information about the task currently under way or any future task that is

derived from work that is currently being performed.

15.5.2 TOOLS THAT ADDRESS TECHNOLOGY TRENDS

One of the dominant trends in technology tools is the creation of a tool set that supports

model-driven development with an emphasis on architecture-driven design. A new generation

of tools will work in conjunction with a repository to

 Create models at all necessary levels of abstraction,

 Establish relationships between the various models,

 Translate models at one level of abstraction to another level (e.g., translate a design

model into source code),

 Manage changes and versions,

 Coordinate quality control and assurance actions against the software models.

In addition to complete software engineering environments, point-solution tools that address

everything from requirements gathering to design/code refactoring to testing will continue to

evolve and become more functionally capable. In some instances, modeling and testing tools

targeted at a specific application domain will provide enhanced benefit when compared to

their generic equivalents.

15.6 AGILE PROJECT MANAGEMENT

 Agile project management, a major trend is an iterative approach to delivering a

project throughout its life cycle. Iterative or agile life cycles are composed of

57

several iterations or incremental steps towards the completion of a project. Iterative

approaches are frequently used in software development projects to promote velocity and

adaptability since the benefit of iteration is that you can adjust as you go along rather than

following a linear path.

One of the aims of an agile or iterative approach is to release benefits throughout the process

rather than only at the end. At the core, agile projects should exhibit central values and

behaviors of trust, flexibility, empowerment and collaboration.

Agile software development is considered

 In highly dynamic market environments where a strong focus on end user

requirements is mandatory

 By most interviewees to be the weapon of choice when projects are explorative, are

about innovative development, offer leeway for developers and do not involve too

complex software architecture.

Regardless of the context in which agile software development is implemented, respondents

clarified that agile software development must not serve as an empty label behind which

developers hide chaotic software development practices. Agile software development neither

frees developers from a priori specification of the system to be developed nor renders

systematic planning and procedures obsolete. However, it still presupposes developers keep

track of the global system to be developed.

Advantages

 Speeding Up software development in Unstable Environments: Generally, agile

software development allows software development processes to speed up, account for

the dynamics of emerging requirements, and integrate customers/users into the SD

process.

 Empowering Developers and Teams: From the developers‘ point of view, agile

software development strengthens entrepreneurial mentalities as well as heightens

individual freedom and responsibility by equalizing and empowering team members.

 Improving Coordination: Agile software development decreases loss of time spent for

meetings and coordination; it fosters transparency and collective learning, and improves

predictability and productivity.

58

The effectiveness of agile methodologies depends on the way they are implemented by a

given company; in this sense, experts stressed that introducing agility does entail a change in

business culture and organizational structures of the wider organization indeed.

15.6.1 IT SECURITY IMPLICATIONS OF AGILE SOFTWARE DEVELOPMENT

From the analysis of expert‘s statements, it follows that these implications eventually revolve

around the notion of expertise.

(a) Changing Requirements and Developers’ Expertise - One of the fundamental agile

values is to welcome changing requirements, even late in development. However, altering or

introducing new requirements may have security implications. Also, change in requirements,

design and a feature threatens to bring about problems for organizations in so far as any

change on the software development level may have repercussions for the management,

documentation and support level. Moreover, when outsourcing components, it may prove

problematic to change requirements late in the process. The analogy to functional features

says that they can‘t be modularized nor integrated in the final stages or a posteriori.

Agile software development demands

 A great deal of individual developers in terms of security expertise.

 SD teams tend to be more fluid, every team member needs to have security awareness

and expertise.

 Every team member must be able to specify security relevant requirements as well as

judge whether and how some change in requirements affects security.

 Thus, agile SD increases the security expertise that any individual developer is

required to have.

b) Systematic Processes and Scalability of Expertise - In so far as agile SD emphasizes the

individual and downplays processes, it may evoke a weakening of the overall system‘s

perspective. This may prove problematic, since an overall system‘s view is necessary to take

care of security. Agile SD challenges companies to implement systematic security processes,

which allow security expertise to be distributed as widely as possible without overburdening

individuals with security concerns. Hence any secure software development life cycle

(SDLC) must be clearly defined and tailored specifically to the company adopting it.

In spite of the specifics of implementing an SDLC in relation to a company‘s organizational

culture, experts mentioned three measures that will be considered:

59

(i) Security Early On: In agile SD it is even more crucial to integrate security into the SD

process early on. Threat models and solutions are to be specified early on and followed up

over the whole SDLC; there must be early quality assurance, early (immediate) and

systematic testing instructed by experts; immediate feedback and fixing is necessary in the

case of vulnerability occurrences.

ii) Scalability of Security Expertise: As it is not very easy to implement feedback

mechanisms for immediate bug fixing in large-scale organizations, and as individual

developers cannot be expected to have detailed knowledge of any testing tool (though such

knowledge is required so as to not have too many false positives etc.), security specialists are

supposed to manage testing tools centrally, with the developers able to choose correctly and

use them if required so as to make security expertise scalable.

iii) Strengthening Exchange: Along with the individual developers to be equipped with the

skills and tools to realize and fix security issues, security experts need to acquire in turn agile

SD expertise so as to know how to integrate security into such processes. In this sense, there

is not only a need to provide developers with security expertise, but also to provide security

experts with agility expertise.

15.7 CHECK YOUR PROGRESS

1. Which are the trends leads to technological innovation?

2. Define hype cycle

3. ___ can guide the direction of research and the technology that is derived as a

consequence of research.

4. What is the aim of SPI frameworks?

5. Write the formula for Return on Investment (ROI)

6. DSML stands for ___.

7. Agile project management is an ___ approach.

8. What is the aim of Agile project management?

Answers to check your progress:

1. Bussiness, organizational, market and cultural trends

2. The hype cycle is a graphical representation of the life cycle stages a technology goes

through from conception to maturity and widespread adoption.

60

3. Soft trends

4. SPI frameworks will emphasize strategies that focus on goal orientation and product

innovation.

5.

6. Domain-Specific Modeling Languages

7. Iterative approach

8. The aim of an agile project management is to release benefits throughout the process

rather than only at the end.

15.8 SUMMARY

The trends that have an effect on software engineering technology often come from

the business, organizational, market, and cultural arenas. These ―soft trends‖ can guide the

direction of research and the technology that is derived as a consequence of research.

As a new technology is introduced, it moves through a life cycle that does not always lead to

widespread adoption, even though original expectations are high. The degree to which any

software engineering technology gains widespread adoption is tied to its ability to address the

problems posed by both soft and hard trends.

Soft trends—the growing need for connectivity and collaboration, global projects, knowledge

transfer, the impact of emerging economies, and the influence of human culture itself, lead to

a set of challenges that span managing complexity and emergent requirements to juggling an

ever-changing talent mix among geographically dispersed software teams.

Hard trends—the ever-accelerating pace of technology change—flow out of soft trends and

affect the structure of the software and scope of the process and the manner in which a

process framework is characterized. Collaborative development, new forms of requirements

engineering, model-based and test-driven development, and postmodern design will change

the methods landscape. Tools environments will respond to a growing need for

communication and collaboration and at the same time integrate domain-specific point

solutions that may change the nature of current software engineering tasks.

61

15.9 KEYWORDS

 The ―hype cycle‖: It presents a realistic view of short-term technology integration. The

long-term trend, however, is exponential.

 Open-world software: It encompasses ambient intelligence, context aware apps, and

pervasive computing

 Collaboration: It involves the timely dissemination of information and an effective

process for communication and decision making.

 Model-driven approaches: It address a continuing challenge for all software

developers—how to represent software at a higher level of abstraction than code.

 TDD: It is a trend that emphasizes the design of test cases before the creation of source

code.

15.10 QUESTIONS FOR SELF STUDY

1. Why does open-world software present a challenge to conventional software engineering

approaches?

2. What are ―emergent requirements‖ and why do they present a challenge to software

engineers?

3. What are soft and hard trends? What is the importance of soft trends?

4. Explain briefly Technology evolution using technology innovation life cycle.

5. Describe the Hype cycle

6. Define open source. List its advantages.

7. Discuss few trends in process and methods that are likely to influence on software

engineering over the next decade.

8. Explain briefly the success factors that lead to successful collaboration efforts in

collaborative development.

9. Give short notes on the Requirement engineering.

10. Describe model-driven software development in your own words. Do the same for test

driven development.

11. Explain TDD

12. Discuss about tools related trends.

13. Give an account of IT security implications of Agile software development.

62

15.11 REFERENCES

1. Agile Software Development: Principles Patterns and Practices - Robert C. Martin –

StuDocu.

2. Software Engineering, A Practitioner‘s Approach – 7
th

Edition, Roger S.Pressman.

3. Software Project Management in Practice – Pankaj Jalote.

4. Software Engineering: Pearson New International Edition – Ian Sommerville, 2013.

63

STRUCTURE

16.0 Objectives

16.1 Introduction

16.2 Overview

16.3 Getting started with manday.com

16.4 Create workspace

16.5 Create Folders

16.6 Create Boards

16.7 Team

16.8 Creating groups

16.9 Create Items

16.10 Automate

16.11 Check your progress

16.12 Summary

16.13 Key words

16.14 Questions for self-study

16.15 References

16.0 OBJECTIVES

After studying this unit, you will be able to:

 Learnt how to manage projects

 Describe about how to create folders

 Know about handling project

 Students are able to plan the project

 Learns project scheduling and time estimation

16.1 INTRODUCTION

 Monday.com is a customizable web and mobile work management platform, designed to

help teams and organizations with operational efficiency by tracking projects and workflows,

visualizing data, and team collaboration. It includes automation capabilities and supports

integrations with other work apps. Monday.com continuously ranks highly for project

management software. In addition to its support for a wide range of use cases, the software is

UNIT-16: PRACTICING WITH AN ONLINE PROJECT MANAGEMENT TOOL

64

loaded with functionality. It comes with collaboration features, timeline views, calendar

views, time tracking features, and dozens of integrations.

16.2 OVERVIEW

Monday.com is an open source project management tool. Monday.com is now all-in-

one free project management tool and customer relationship management (CRM) software.

Monday.com is very easy to use and almost self-explanatory. It is a user-friendly, visually

pleasing tool that enables small and large businesses to collaborate together on one easy to

use platform. In the recent update, Monday.com has come up with a range of innovative

solutions for businesses to choose from.

16.3 GETTING STARTED WITH MANDAY.COM

So, let‘s get you started on how to integrate your business with Monday.com and

manage your projects and customers, all in one place. Free plan is ideal for new business

start-ups or freelancers who want to get started with project management or customer

relationship management activities. Two users can have access to the free subscription plan.

Monday.com has a plan for small teams of 3-10 people (which also offers a 14-day free trial

to start with initially). If you have a team of larger than 2 people then we recommend you

begin with the standard plan because it gives you access to more advanced features like

automation that are incredibly useful for saving time. Once you have set up the account, you

can add your team members simply by adding their email addresses. We have to create an

account in the Monday.com to manage your work. Below screenshots show the steps to of

create an account.

Figure 16.1 Welcome page to Monday.com

65

Figure 16.2. Screen shots to create an accoount

16.4 CREATE WORKSPACE

Workspaces are used by teams to organize and manage their accounts by departments,

teams and projects. Workspaces can contain boards, dashboards, and folders. Any team

member subscribed to a board from a closed workspace will have access to that board but

will not be able to see anything else within the workspace. Main boards in closed workspaces

are accessible only to team members who have joined the workspace.

The main center of Monday is the workspace where projects can be managed, set up

campaigns, sales pipelines or CRM‘s. One workspace usually needed for beginners but

Monday.com offers the facility to create more than one workspace. Monday.com has made it

easy to organize this space. Here the figure shows the workspace creation.

66

Figure 16.3 Workspace

16.5 CREATE FOLDERS

A folder is simply a storage space for boards. Folders make it easy to organize all of

your boards so that your account can stay neat and clean. Workspaces are here to help your

organization better manage multiple departments, teams and projects in one unified place.

We need to create folders before to starts with our first project. Monday.com offers us space

to create different folders within your Workspace. This facility helps the user to organize

multiple projects for multiple clients.

Figure 16.4 Folder creation

67

16.6 CREATE BOARDS

A board is where you can manage anything like project, board, roadmap, sales

pipeline, and budget etc., the possibilities are endless. Main boards are visible to anyone who

is a team member within your account whether they are viewers or members. The board is a

view of a selection of issues that you can use to see and update them. It displays them in

columns, with each column representing a step in your process for them. A dashboard is a

place to collect together a set of reports that people might find useful.

We can create boards that are specific to the activity of a project, and Monday gives us the

option to share the board with external users like clients. Clients can check the progress of

their activities and monitor progress. Boards are treated as specific projects that are created.

These projects can be managed in the folders in your Workspace.

Figure 16.5 Board creation

So, new project can be created by click on the ‗create new board‘ button on left pane then

You can select from various templates for the kind of board (project) you wish to create, like

Marketing, Content Production, Project Management or Sales and CRM-based projects.

SET UP A NEW MONDAY.COM BOARD

Once we have created an account, with 200+ customizable templates, it‘s easy for us to

choose find something that matches the business‘s needs. Managing growth projects, sales

teams, budgets, HR or a dev sprint, you can try the high level project plan template, the sales

68

process template, the budget tracker template, the employee onboarding template, or the

sprint planning template.

Figure 16.6. Categories and views in Monday.com

For instance, to lead company‘s marketing team, the editorial calendar and client

management templates can be selected.

69

Figure 16.7. Editorial calender in Monday.com

BUILD YOUR MONDAY.COM DASHBOARD

Once you‘ve got your monday.com boards and team in place (team creation is discussed in

next section), it‘s time to set up your dashboards. monday.com dashboards provide you with

a clear overview of your current projects and boards. You can customize dashboards by

adding different widgets.

Figure 16.7. Dashboards in Monday.com

70

INCLUDING STATUSES AND DATES

Hitting deadlines and keeping track of all the different moving parts is a fundamental part of

effective project management. Adding a start date and a finish time helps map out your

project‘s overall timeline. You can include dates by adding a date column. Equally, a status

column can give you a quick indication of how each task is going. Once you‘ve added a

status column, users can update whether a task is in progress, complete, or if they‘re stuck.

Figure 16.7. Monthly view in Monday.com

DISPLAY VIEWS

Depending on the business and project requirements, you may have a preferred way of

displaying your timetables, Workflows, and processes. Here are the available views in

Monday.

 Kanban is great for helping teams collaborate by displaying all project-related

Workflows and sprints. Intuitive color-coding makes it easy to see at what stage of the

project each task is at. Users who prefers brightly colored may choose Kanban board that

maps out each section of the project.

71

Figure 16.8. Display sample in Monday.com

 Calendar view is effective for planning out your team‘s monthly, quarterly, or yearly

workload.

Figure 16.9. Task view screen

 Gantt view is best for mapping out project deadlines and checking in on task timelines

in the form of a Gantt chart. A Gantt chart is a horizontal bar chart that shows a project‘s

planned schedule the Gantt chart represents a task, while the dates are laid out

horizontally and its tasks or events between a start and finish date.

72

Figure 16.10. Gantt chart in Monday.com

 Chart helps you review all your project-related events and tasks.

Figure 16.11. chart view in Monday.com

 Timeline is effective for giving you a full overview of who is working on which projects

when.

Figure 16.12. Timeline view in Monday.com

73

16.7 TEAM

Open communication and team collaboration is the key to successful project

management. A team is any group of individuals who are working together to achieve a

shared goal. In the workplace, team can be a department, a project team, a functional

department team, a cross-functional or cross-departmental team, management teams, or

whatever other type of team works in the company. The individuals in the teams on

monday.com account, can be notified, updated, and communicated with all together as a

team.

We need to click on your profile picture and select teams. Here, you can see all the existing

team members on your account and add new team members. Once you‘ve selected team

members and named your team, we recommend choosing a team photo, which will make it

much easier to identify who‘s working on what. Creating teams allows you to easily notify,

update, assign tasks, and chat with teammates throughout your account all in one go.

Figure 16.12. Team members visibilty page in Monday.com

Furthermore, teams can provide you with another way to keep information secure on your

account. By sharing specific Private or Shareable boards with a team, you can ensure that the

right people have access to the right information at all times.

https://support.monday.com/hc/en-us/articles/115005310185-Private-Boards
https://support.monday.com/hc/en-us/articles/115005309925-Shareable-Boards

74

16.8 CREATING GROUPS

A group is a color-coded section on your board that contains the items in rows and

helps to categorize and organize them in any way that we wish. When creating a board, you

then need to create your groups. A group can represent anything from a week, a month, a

specific step of a project, client, or whatever you want.

We can create multiple groups to divide the tasks that you have to perform for the client, like

client requirements, testing, in progress and completed tasks.

Figure 16.13. Groups of items in Monday.com

Different groups contain tasks, campaigns or features related to one project. They can all be

organized according to the progress of the project. Each group can be named according to its

completion of tasks. Then you can easily drag the tasks from one phase to another.

16.9 CREATING ITEMS

An item is an individual row or line item in a group, there are a few different ways

that you can add a new item to your board. Items are tasks that need to complete the project

group. Items are the deliverables and Monday project management software makes it a

simple process to manage them.

We can simply click the ‗add item‘ button and add the deliverables. Once the task is

completed, we can move the item from one group to another.

75

Figure 16.14. Adding items to the groups in Monday.com

CREATE COLUMNS

Within items, just beside each item, Monday.com software offers a feature to add columns to

define various things like its status, due date, and name of the employee working on it, and

more. One of the default columns is called people. We can define which person is working on

the task. There is also an option to add more people to the task by simply adding their names

to the people‘s column via email address.

Figure 16.15. Adding columns in Monday.com

A simple right-click on the column button will open a drop-down menu of various items for

which you can add a column. They can be things like timeline, tags, dates, sub-items, formula

or text, and much more.

76

16.10 AUTOMATE

Manual work can be a huge drag on the team‘s overall productivity and set the project

back. Monday.com Automations help relieve some of this tedious work. The best part is that

the platform handles the technical side and this does not need to do any coding. Automations

allow you to set any event to trigger an action. For instance, when a team member completes

a task, you could set it to trigger a notification to the team leader.

Hence, automate allows us to setup pre-decided automations within the projects. We can

observe a status here saying ―when Status changes to something, notify someone‖. So here,

we can define the parameters for status, something and someone. You can decide whom to

notify when the status of an item or task changes from one status to another.

Figure 16.15. Project automation

For example, you can define the software to notify ‗John‘ when ‗home page development‘

task‘s status changes from ‗in-progress‘ to ‗complete‘. This is just one example. There is an

abundance of automations that you can leverage to reduce many of the manual, messy and

time-consuming activities.

16.11 CHECK YOUR PROGRESS

1. Monday.com is a customizable web and mobile work management platform. State

True/False.

2. Workspaces are used by teams to organize and manage their _____________by

departments, teams and projects.

3. A folder is simply a storage space for boards. State True/False.

77

4. Calendar view is effective for planning out your team‘s monthly, quarterly, or

yearly________________.

5. Write the full form of (CRM) software.

Answer to check your progress:

1. True

2. Accounts

3. True

4. workload

5. customer relationship management

16.12 SUMMARY

Monday.com is highly customizable templates and dashboards have the power to

transform the way the business works. While many other services out there might describe

themselves as project management tools, monday.com is a complete Work OS — a

workspace that allows you to do so much more than assign a task to the graphic designer

from choosing multiple views to building the dashboard and collaborating with teammates,

there is no limit to what we create and manage with monday.com. If you are keen to get

started, give the monday.com platform a go and put all of these tips into practice.

16.13 KEYWORDS

 Folder: a folder is a storage space for board space.

 Workspace: monday.com Workspaces are used by teams to organize and manage their

accounts by projects. Workspaces can contain boards, dashboards, and folders.

 Boards: A board is where you can manage anything like project.

 CRM: Customer relationship management.

 FreeLancer: Freelancing is a type of self-employment. Instead of being employed by a

company, freelancers tend to work as self-employed, delivering their services on a

contract or project basis,

 Dashboards: Dashboards are a great way to display what's important in just one place.

78

16.14 QUESTIONS FOR SELF STUDY

1. What is a folder? How can you create a folder in Monday.com?

2. What is workspace? Discuss the importance of workspace in project management.

3. What are boards and explain the necessary of boards?

4. What are the steps involved to create boards.

5. Discuss the different widgets of dashboards.

6. Explain various display views available in Monday.com.

7. Why team is necessary in project management? Discuss in detail how can you create a

team and view team members.

8. Mention the steps to create multiple groups.

9. Discuss the steps to create items and how to view them.

10. Explain the importance of software automation.

16.15 REFERENCES

Monday.com

